Journal of Molecular Modeling

, 25:357 | Cite as

How water affects mercury–halogen interaction in the atmosphere

  • Tetiana ZubatiukEmail author
  • Glake Hill
  • Jerzy Leszczynski
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift


The solvation of mercury and halogens ions in water is essential for studying the reaction kinetics of various mercury depletion reactions in the atmosphere. Here, we use two approaches. The first one is the implementation of transition state theory to study the recombination reactions of Hg2+and Hal with the introduction of a water molecule as a third body part. The inclusion of solvation corrections to the total energy enables one to localize the barrier for such diatomic systems with explicit water molecule participation. The second approach is the molecular modeling of three mercuric halide ion pairs in water complexes [HgHal(H2O)n]+ (Hal = Cl, Br, I) by using the semiempirical tight-binding molecular dynamics combined with density functional theory calculations. Various [Hg-Hal]+ ion pairs behave similarly when hydrated and tend to adopt clathrate-like configurations with a [Hg2+(H2O)6] central motif and halogen ions residing on the external surface of the water complex. Contact ion pairs are energetically favorable for all complexes up to 50 water molecules. Further increase in the level of hydration stabilized the solvent-separated forms of [Hg-Hal]+ ion pairs, which matches the water affinity rule. The balance between the contact and the solvated ion pairs was shown to be ion-pair specific and temperature dependent.

Graphical abstract

The structure of stable water complexes of mercury halides reflects the competition between water-water, Hg2+ -water, and Hal -water interactions.


Dynamics Mercury Halogens Ion pair Water complex Microsolvation 



U.S. Army Research Office ARO W911NF-16-1-0486 supported this work. We thank the Mississippi Center for Supercomputer Research (Oxford, MS, USA) for an allotment of computer time.

Supplementary material

894_2019_4212_MOESM1_ESM.docx (399 kb)
ESM 1 (DOCX 399 kb)


  1. 1.
    Ariya P. A., Peterson K., Snider, G. & Amyot, M. Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties. in Mercury Fate and Transport in the Global Atmosphere 459–501 (Springer US, 2009). CrossRefGoogle Scholar
  2. 2.
    Lin C., Singhasuk, P. & Pehkonen S. Environmental chemistry and toxicology of mercury. (John Wiley & Sons, Inc., 2012)Google Scholar
  3. 3.
    Spicer CW et al (2002) Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: concentrations and sources. Atmos. Environ. 36:2721–2731CrossRefGoogle Scholar
  4. 4.
    Barrie LA, Bottenheim JW, Schnell RC, Crutzen PJ, Rasmussen RA (1988) Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334:138–141CrossRefGoogle Scholar
  5. 5.
    Boudries H, Bottenheim JW (2000) Cl and Br atom concentrations during a surface boundary layer ozone depletion event in the Canadian High Arctic. Geophys. Res. Lett. 27:517–520CrossRefGoogle Scholar
  6. 6.
    Lindberg SE et al (2002) Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 36:1245–1256CrossRefGoogle Scholar
  7. 7.
    Temme C, Einax JW, Ebinghaus R, Schroeder WH (2003) Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the South Atlantic Ocean during polar summer. Environ. Sci. Technol. 37:22–31CrossRefGoogle Scholar
  8. 8.
    Skov H et al (2004) Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environ. Sci. Technol. 38:2373–2382CrossRefGoogle Scholar
  9. 9.
    Gauchard P et al (2005) Study of the origin of atmospheric mercury depletion events recorded in Ny-Ålesund, Svalbard, spring 2003. Atmos. Environ. 39:7620–7632CrossRefGoogle Scholar
  10. 10.
    Lu JY et al (2001) Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophys. Res. Lett. 28:3219–3222CrossRefGoogle Scholar
  11. 11.
    Lin CJ, Pehkonen SO (1998) Two-phase model of mercury chemistry in the atmosphere. Atmos Env. 32:2543–2558CrossRefGoogle Scholar
  12. 12.
    Hynes A. J., Donohoue D. L., Goodsite M. E. & Hedgecock I.M.. Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfaces. in Mercury fate and transport in the global atmosphere 427–457 (Springer, 2009)Google Scholar
  13. 13.
    Castro L, Dommergue A, Ferrari C, Maron L (2009) A DFT study of the reactions of O-3 with Hg degrees or Br. Atmos. Environ. 43:5708–5711CrossRefGoogle Scholar
  14. 14.
    Khalizov A, Viswanathan B, Larregaray P, Ariya P (2003) A theoretical study on the reactions of Hg with halogens: atmospheric implications. J. Phys. Chem. A 107:6360–6365CrossRefGoogle Scholar
  15. 15.
    Munthe J (1992) The aqueous oxidation of elemental mercury by ozone. Atmos Env. A 26:1461–1468CrossRefGoogle Scholar
  16. 16.
    Lin CJ, Pehkonen SO (1997) Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmos Env. 31:4125–4137CrossRefGoogle Scholar
  17. 17.
    Wang Z, Pehkonen SO (2004) Oxidation of elemental mercury by aqueous bromine: atmospheric implications. Atmos Env. 38:3675–3688CrossRefGoogle Scholar
  18. 18.
    Holmes CD, Jacob DJ, Yang X (2006) Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere. Geophys. Res. Lett. 33(5)Google Scholar
  19. 19.
    Shepler BC, Wright AD, Balabanov NB, Peterson KA (2007) Aqueous microsolvation of mercury halide species. J. Phys. Chem. A 111:11342–11349CrossRefGoogle Scholar
  20. 20.
    Maron L, Dommergue A, Ferrari C, Delacour-Larose M, Faïn X (2008) How elementary mercury reacts in the presence of halogen radicals and/or halogen anions: a DFT investigation. Chem. - A Eur. J. 14:8322–8329CrossRefGoogle Scholar
  21. 21.
    Majumdar D, Roszak S, Leszczynski J (2011) Probing the structures and thermodynamic characteristics of the environment polluting mercuric halides, cyanides and thiocyanates. Chem. Phys. Lett. 501:308–314CrossRefGoogle Scholar
  22. 22.
    Liu C-W et al (2014) Stable salt–water cluster structures reflect the delicate competition between ion–water and water–water interactions. J. Phys. Chem. B 118:743–751CrossRefGoogle Scholar
  23. 23.
    Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements ( Z = 1–86). J. Chem. Theory Comput. 13:1989–2009CrossRefGoogle Scholar
  24. 24.
    Frisch, M. J. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT. (2009)Google Scholar
  25. 25.
    Song Y, Akin-Ojo O, Wang F (2010) Correcting for dispersion interaction and beyond in density functional theory through force matching. J. Chem. Phys. 133:174115CrossRefGoogle Scholar
  26. 26.
    Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3:214–218CrossRefGoogle Scholar
  27. 27.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 17:49–56CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Accounts 120:215–241CrossRefGoogle Scholar
  29. 29.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem 24:669–681CrossRefGoogle Scholar
  30. 30.
    Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109:1346–1370CrossRefGoogle Scholar
  31. 31.
    Marcus Y (1991) Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc., Faraday Trans 87:2995–2999CrossRefGoogle Scholar
  32. 32.
    Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys. J. 72:65–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Center for NanotoxicityJackson State UniversityJacksonUSA

Personalised recommendations