Journal of Molecular Modeling

, 25:334 | Cite as

Insights into the activation process of CO2 through Dihydrogenation reaction

  • Rakesh Parida
  • Santanab GiriEmail author
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


Based on first principle calculation, activation of CO2 has been analyzed thoroughly by using different conceptual density functional theory based descriptors like reaction force, reaction force constant, reaction electronic flux, dual descriptor, etc. via dihydrogenation reaction of B3N3, H2 and CO2. The total reaction is a two-step reaction where initially B3N3H2 is formed from the reaction between B3N3 and H2 and in the second step HCOOH is form due to the reaction of CO2 by B3N3H2. It has been found that the di-hydrogen reaction for the CO2 activation is endothermic in nature, which can be changed to exothermic reaction by applying proper external electric field. Movement of H2 plays an important role in the CO2 activation process. The reaction force constant, Wiberg bond index and its derivative reveal that the reaction is slightly asynchronous and concerted in nature.


CO2 activation Reaction force and electronic flux Activation energy DFT 



  1. 1.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013). Chem. Rev. 113:6621PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015). Chem. Rev. 115:12936PubMedCrossRefGoogle Scholar
  3. 3.
    Li YW, Su HB, Chan SH, Sun Q (2015). ACS Catal. 5:6658CrossRefGoogle Scholar
  4. 4.
    Li YW, Sun Q (2016). Adv. Energy Mater. 6:1600463CrossRefGoogle Scholar
  5. 5.
    Li YW, Chan SH, Sun Q (2015). Nanoscale 7:8663PubMedCrossRefGoogle Scholar
  6. 6.
    Álvarez A, Borges M, Corral-Pérez JJ, Olcina JG, Hu L, Cornu D, Huang R, Stoian D, Urakawa A (2017). Chem Phys Chem 18:3135PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ghuman KK, Hoch LB, Szymanski P, Loh JYY, Kherani NP, ElSayed MA, Ozin GA, Singh CV (2016). J. Am. Chem. Soc. 138:1206PubMedCrossRefGoogle Scholar
  8. 8.
    Chen JW, Falivene L, Caporaso L, Cavallo L, Chen EY-X (2016). J. Am. Chem. Soc. 138:5321PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Liu L, Vankova N, Heine T (2016). Phys. Chem. Chem. Phys. 18:3567PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ye J, Johnson JK (2015). ACS Catal. 5:2921CrossRefGoogle Scholar
  11. 11.
    Yun D, Park DS, Lee KR, Yun YS, Kim TY, Park H, Lee H, Yi J (2017). Chem Sus Chem 10:3671CrossRefGoogle Scholar
  12. 12.
    Sinthika S, Kumar EM, Surya VJ, Kawazoe Y, Park N, Iyakutti K,Thapa R (2015). Sci Rep
  13. 13.
    Zhu H, Li Y, Zhu G, Su H, Chan SH, Sun Q (2017). Sci Rep
  14. 14.
    Giri S, Parida R, Jana M, Gutiérrez-Oliva S, Toro-Labbe A (2017). J Phys Chem A 121:9531PubMedCrossRefGoogle Scholar
  15. 15.
    Parida R, Giri S (2018). J. Comput. Chem. 39:993PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Parr RG, Yang W (1997) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  17. 17.
    Geerlings P, Proft FD, Langenaeker W (2003). Chem Rev 103:1793PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, p 715Google Scholar
  19. 19.
    Ayers PW, Anderson JSM, Bartolotti L (2005). Int. J. Quantum Chem. 101:520CrossRefGoogle Scholar
  20. 20.
    Gazquez JL (2008). J. Mex. Chem. Soc. 52:3Google Scholar
  21. 21.
    Liu SB (2009). Acta Phys. -Chim. Sin. 25:590Google Scholar
  22. 22.
    Sen KD, Joegensen C (eds) (1987) Structure and bonding: electronegativity, vol 66. Springer-Verleg, BerlinGoogle Scholar
  23. 23.
    Parr RG, Donelly R, Levy M, Palke W (1978). J. Chem. Phys. 68:3801CrossRefGoogle Scholar
  24. 24.
    Toro-Labbé A (1999). J. Phys. Chem. A 103:4398CrossRefGoogle Scholar
  25. 25.
    Herrera B, Toro-Labbe A (2004). J. Chem. Phys. 121:7096PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Herrera B, Toro-Labbe A (2007). J. Phys. Chem. A 111:5921PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ceron ML, Echegaray E, Gutierrez-Oliva S, Herrera B, Toro-Labbe A (2011). Sci China Chem 54:1982CrossRefGoogle Scholar
  28. 28.
    Morell C, Grand A, Toro-Labbe A (2005). J. Phys. Chem. A 109:205PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Arabiab A, Matta CF (2011). Phys. Chem. Chem. Phys. 13:13738CrossRefGoogle Scholar
  30. 30.
    Shaik S, de Visser SP, Kumar D (2011). J Am ChemSoc 126:11746CrossRefGoogle Scholar
  31. 31.
    Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S (2008). J. Am. Chem. Soc. 130:3319PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Z, Danovich D, Ramanan R, Shaik S (2018). J Am Chem Soc 140:13350PubMedCrossRefGoogle Scholar
  33. 33.
    Shaik S, Ramanan R, Danovich D, Mandal D (2018). Chem. Soc. Rev. 247:5125CrossRefGoogle Scholar
  34. 34.
    Becke A (1993). J. Chem. Phys. 98:5648CrossRefGoogle Scholar
  35. 35.
    Lee C, Yang W, Parr RG (1988). Phys. Rev. B 37:785CrossRefGoogle Scholar
  36. 36.
    Fukui K (1981). Acc. Chem. Res. 14:363CrossRefGoogle Scholar
  37. 37.
    Gonzalez C, Schlegel HBJ (1989). Chem. Phys. 90:2154Google Scholar
  38. 38.
    Hratchian HP, Schlegel HBJ (2004). Chem. Phys. 120:918Google Scholar
  39. 39.
    Politzer P, Toro-Labbé A, Gutierrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005). J. Chem. Sci. 117:467CrossRefGoogle Scholar
  40. 40.
    Politzer P, Burda JV, Concha MC, Lane P, Murray JS (2006). J Phys Chem A 110:756PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rincon E, Toro-Labbe A (2007). Chem. Phys. Lett. 438:93CrossRefGoogle Scholar
  42. 42.
    Yepes D, Murray JS, Perez P, Domingo LR, Politzer P, Jaque P (2014). Phys. Chem. Chem. Phys. 16:6726PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jaque P, Toro-Labbe' A, Politzer P, Geerlings P (2008). Chem Phys Lett 456:135CrossRefGoogle Scholar
  44. 44.
    Koopmans T (1993). Physica 91:651Google Scholar
  45. 45.
    Frisch MJ et al (2010). Gaussian 09, revision B.01. Gaussian, Inc., Wallingford, CTGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Applied Sciences and HumanitiesHaldia Institute of TechnologyKolkataIndia
  2. 2.Department of ChemistryNational Institute of Technology RourkelaOdishaIndia

Personalised recommendations