Advertisement

Journal of Molecular Modeling

, 25:324 | Cite as

Hyperpolarizability studies and Hirshfeld surface analysis of two heterocyclic chalcones

  • Clodoaldo ValverdeEmail author
  • Adailton N. Castro
  • Rosemberg F. N. Rodrigues
  • Ricardo R. Ternavisk
  • Daphne C. Fernandes
  • Florisberto G. dos Santos
  • Hamilton B. Napolitano
  • Francisco A. P. Osório
  • Basílio Baseia
Original Paper

Abstract

In this work, the nonlinear optical (NLO) properties of two heterocyclic chalcones, (E)-1-(5-chlorothiophen-2-yl)-3-(thiophen-2yl)-2-propen-1-one (CLTT) and (E)-1-(5-methylfuran-2-yl)-3-(5-methylthiophen-2-yl)prop-2en-1-one (2MFT), are investigated. Using an iterative electrostatic embedding approach via the Møller-Plesset perturbation (MP2) theory, the chalcone crystals were simulated and the polarization effects on the isolated molecules are investigated. The electrical parameters of CLTT and 2MFT as dipole moment and linear polarizability were calculated via MP2/6-311++G(d) and the second hyperpolarizability was obtained via DFT/CAM-B3-LYP/6-311++G(d) level. A significant influence of the molecular packing on the chalcone electric parameters was observed. The static linear refractive index and the third-order electric susceptibility of the compounds were calculated and compared with experimental results available for other chalcone derivatives, indicating the CLTT crystal as a promising candidate for NLO applications in photonic and optoelectronic devices. The Hirshfeld surface analysis has been used to quantify the intermolecular interactions of the molecular crystals. Additionally, the solvent medium effects on the electrical properties of the heterocyclic chalcones were also studied.

Keywords

Dipole moment Linear polarizability Second hyperpolarizability Linear refractive index Third-order electric susceptibility 

Notes

Funding information

The authors would like to thank the following Brazilian agencies for financial support: agencies CAPES, CNPq, and FAPEG and the PrP/UEG for the research developed with the support of the UEG High Performance Computing Nucleus.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

894_2019_4209_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1052 kb)

References

  1. 1.
    Avupati VR, Rajendra P, Yejella P (2014) Chalcones : a mini review 3:1713–1742Google Scholar
  2. 2.
    Suwito H, Jumina J, Mustofa M, Kristanti AN, Puspaningsih T, Nyoman N (2015) Chalcones: synthesis, structure diversity and pharmacological aspects. ChemInform 46Google Scholar
  3. 3.
    Tran T-D, Nguyen T-T-N, Do T-H, Huynh T-N-P, Tran C-D, Thai K-M et al (2012) Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 17:6684–6696CrossRefGoogle Scholar
  4. 4.
    Ternavisk RR, Camargo AJ, Machado FBC, Rocco JAFF, Aquino GLB, Silva VHC, Napolitano HB (2014) Synthesis, characterization, and computational study of a new dimethoxy-chalcone. J Mol Model 20:2526CrossRefGoogle Scholar
  5. 5.
    Custodio JMF, Vaz WF, de Andrade FM, Camargo AJ, Oliveira GR, Napolitano HB (2017) Substitution effect on a hydroxylated chalcone: conformational, topological and theoretical studies. J Mol Struct 1136:69–79.  https://doi.org/10.1016/j.molstruc.2017.01.076 CrossRefGoogle Scholar
  6. 6.
    Yerragunta V, Kumaraswamy T, Suman D, Anusha V, Patil P, Samhitha T (2013) A review on chalcones and its importance. PharmaTutor 1:54–59Google Scholar
  7. 7.
    Wang H-M, Zhang L, Liu J, Yang Z-L, Zhao H-Y, Yang Y, Shen D, Lu K, Fan Z-C, Yao Q-W et al (2015) Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur J Med Chem 92:439–448CrossRefGoogle Scholar
  8. 8.
    Mahapatra DK, Bharti SK, Asati V (2015) Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem 98:69–114CrossRefGoogle Scholar
  9. 9.
    Bashir R, Ovais S, Yaseen S, Hamid H, Alam MS, Samim M, Singh S, Javed K (2011) Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents. Bioorg Med Chem Lett 21:4301–4305CrossRefGoogle Scholar
  10. 10.
    Chen M, Christensen SB, Zhai L, Rasmussen MH, Theander TG, Frøkjaer S, Steffansen B, Davidsen J, Kharazmi A (1997) The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis 176:1327–1333CrossRefGoogle Scholar
  11. 11.
    Ritter M, Martins RM, Rosa SA, Malavolta JL, Lund RG, Flores AFC, Pereira CMP (2015) Green synthesis of chalcones and microbiological evaluation. J Braz Chem Soc 26:1201–1210Google Scholar
  12. 12.
    Prabhu SR, Jayarama A, Chandrasekharan K, Upadhyaya V, Ng SW (2017) Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone. J Mol Struct 1136:244–252.  https://doi.org/10.1016/j.molstruc.2017.01.069 CrossRefGoogle Scholar
  13. 13.
    Prabhu AN, Upadhyaya V, Jayarama A, Subrahmanya Bhat K (2013) Synthesis, growth and characterization of π conjugated organic nonlinear optical chalcone derivative. Mater Chem Phys 138:179–185.  https://doi.org/10.1016/j.matchemphys.2012.11.041 CrossRefGoogle Scholar
  14. 14.
    Custodio J, Faria E, Sallum L, Duarte V, Vaz W, De Aquino G, Carvalho P, Napolitano H (2017) The influence of methoxy and ethoxy groups on supramolecular arrangement of two methoxy-chalcones. J Braz Chem Soc 28:2180–2191.  https://doi.org/10.21577/0103-5053.20170067 CrossRefGoogle Scholar
  15. 15.
    Custodio JMF, Moreira CA, Valverde C, De Aquino GLB, Baseiaa B, Napolitano HB (2018) Hirshfeld surfaces and nonlinear optics on two conformers of a heterocyclic chalcone. J Braz Chem Soc 29:258–268.  https://doi.org/10.21577/0103-5053.20170136 CrossRefGoogle Scholar
  16. 16.
    Abegão LMG, Fonseca RD, Santos FA, Souza GB, Barreiros ALBS, Barreiros ML, Alencar MARC, Mendonça CR, Silva DL, De Boni L, Rodrigues JJ (2016) Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones. Chem Phys Lett 648:91–96.  https://doi.org/10.1016/j.cplett.2016.02.009 CrossRefGoogle Scholar
  17. 17.
    Maidur S, Jahagirdar J, Patil P, Chia T, Quah C (2018) Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives. Opt Mater (Amst) 75:580–594CrossRefGoogle Scholar
  18. 18.
    Ali M, Elzupir A, Ibrahem M, Suliman I, Modwi A, H I, Ibnaouf K (2017) Characterization of optical and morphological properties of chalcones thin films for optoelectronics application. Opt J Light Electron Opt 145:529–533CrossRefGoogle Scholar
  19. 19.
    Won S-J, Liu C-T, Tsao L-T, Weng J-R, Ko H-H, Wang J-P, Lin C-N (2005) Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur J Med Chem 40:103–112.  https://doi.org/10.1016/j.ejmech.2004.09.006 CrossRefPubMedGoogle Scholar
  20. 20.
    Sai Kiran M, Anand B, Siva Sankara Sai S, Nageswara Rao G (2014) Second- and third-order nonlinear optical properties of bis-chalcone derivatives. J Photochem Photobiol A Chem 290:38–42.  https://doi.org/10.1016/j.jphotochem.2014.06.004 CrossRefGoogle Scholar
  21. 21.
    Prasad YR, Rao AL, Rambabu R (2008) Synthesis and antimicrobial activity of some chalcone derivatives. E-Journal Chem 5:461–466CrossRefGoogle Scholar
  22. 22.
    Chen J, Wang X, Ren Q, Patil PS, Li T, Yang H, Zhang J, Li G, Zhu L (2011) Investigation of third-order nonlinear optical properties of NNDC-doped PMMA thin films by Z-scan technique. Appl Phys A Mater Sci Process 105:723–731CrossRefGoogle Scholar
  23. 23.
    Ming LS, Jamalis J, Al-Maqtari HM, Rosli MM, Sankaranarayanan M, Chander S, Fun H-K (2017) Synthesis, characterization, antifungal activities and crystal structure of thiophene-based heterocyclic chalcones. Chem Data Collect 9:104–113CrossRefGoogle Scholar
  24. 24.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm. 11:19–32.  https://doi.org/10.1039/B818330A CrossRefGoogle Scholar
  25. 25.
    Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. Univ. West, AustGoogle Scholar
  26. 26.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci 60:627–668.  https://doi.org/10.1107/S0108768104020300 CrossRefGoogle Scholar
  27. 27.
    Spackman MA, Munshi P, Jayatilaka D (2007) The use of dipole lattice sums to estimate electric fields and dipole moment enhancement in molecular crystals. Chem Phys Lett 443:87–91.  https://doi.org/10.1016/j.cplett.2007.06.058 CrossRefGoogle Scholar
  28. 28.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433.  https://doi.org/10.1063/1.1688752 CrossRefPubMedGoogle Scholar
  29. 29.
    Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160CrossRefGoogle Scholar
  30. 30.
    Senthil K, Kalainathan S, Kumar AR, Aravindan PG (2014) Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv 4:56112–56127.  https://doi.org/10.1039/C4RA09112D CrossRefGoogle Scholar
  31. 31.
    Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2004) Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. J Chem Phys 120:3787–3798.  https://doi.org/10.1063/1.1642593 CrossRefPubMedGoogle Scholar
  32. 32.
    Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977–1979.  https://doi.org/10.1103/PhysRev.126.1977 CrossRefGoogle Scholar
  33. 33.
    Gubler U, Bosshard C (2000) Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ^(3). Phys Rev B 61:10702–10710.  https://doi.org/10.1103/PhysRevB.61.10702 CrossRefGoogle Scholar
  34. 34.
    Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, revision D. 01Google Scholar
  35. 35.
    Desiraju GR (1996) The C- H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29:441–449CrossRefGoogle Scholar
  36. 36.
    Chakravorty S, Platts JA, Das BK (2011) Novel C--H? C contacts involving 3,5-dimethylpyrazole ligands in a tetracoordinate Co (ii) complex. Dalton Trans 40:11605–11612CrossRefGoogle Scholar
  37. 37.
    D’silva ED, Podagatlapalli GK, Venugopal Rao S, Dharmaprakash SM (2012) Study on third-order nonlinear optical properties of 4-methylsulfanyl chalcone derivatives using picosecond pulses. Mater Res Bull 47:3552–3557.  https://doi.org/10.1016/j.materresbull.2012.06.063 CrossRefGoogle Scholar
  38. 38.
    Guadagnini PH, Bruns RE, Souza AA (1996) Cargas atômicas em moléculas. Quim Nova 19:148–155Google Scholar
  39. 39.
    Santos OL, Fonseca TL, Sabino JR, Georg HC, Castro MA (2015) Polarization effects on the electric properties of urea and thiourea molecules in solid phase. J Chem Phys 143:234503.  https://doi.org/10.1063/1.4937481 CrossRefPubMedGoogle Scholar
  40. 40.
    Santos OL, Sabino JR, Georg HC, Fonseca TL, Castro MA (2017) Electric properties of the 3-methyl-4-nitropyridine-1-oxyde (POM) molecules in solid phase: a theoretical study including environment polarization effect. Chem Phys Lett 669:176–180.  https://doi.org/10.1016/j.cplett.2016.12.042 CrossRefGoogle Scholar
  41. 41.
    Valverde C, Osório FAP, Fonseca TL, Baseia B (2018) DFT study of third-order nonlinear susceptibility of a chalcone crystal. Chem Phys Lett 706:170–174.  https://doi.org/10.1016/j.cplett.2018.06.001 CrossRefGoogle Scholar
  42. 42.
    Tomasi J, Cammi R, Mennucci B (1999) Medium effects on the properties of chemical systems: an overview of recent formulations in the polarizable continuum model (PCM). Int J Quantum Chem 75:783–803CrossRefGoogle Scholar
  43. 43.
    Arshad MN, Bibi A, Mahmood T, Asiri AM, Ayub K (2015) Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study. Molecules. 20:5851–5874.  https://doi.org/10.3390/molecules20045851 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Petrov DV, Santos BS, Pereira GAL, de Mello Donegá C (2002) Size and band-gap dependences of the first hyperpolarizability of CdxZn1-xS nanocrystals. J Phys Chem B 106:5325–5334.  https://doi.org/10.1021/jp010617i CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Clodoaldo Valverde
    • 1
    • 2
    Email author
  • Adailton N. Castro
    • 1
  • Rosemberg F. N. Rodrigues
    • 1
    • 2
  • Ricardo R. Ternavisk
    • 1
  • Daphne C. Fernandes
    • 1
  • Florisberto G. dos Santos
    • 1
  • Hamilton B. Napolitano
    • 2
  • Francisco A. P. Osório
    • 3
    • 4
  • Basílio Baseia
    • 3
    • 5
  1. 1.Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS)Universidade PaulistaGoiâniaBrazil
  2. 2.Campus de Ciências Exatas e TecnológicasUniversidade Estadual de GoiásAnápolisBrazil
  3. 3.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  4. 4.Pontifícia Universidade Católica de GoiásGoiâniaBrazil
  5. 5.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations