Journal of Molecular Modeling

, 25:351 | Cite as

Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds

  • Yishan ChenEmail author
  • Lifeng Yao
  • Fan Wang
Original Paper


The binary and ternary complexes composed of GeH3F, AsH2F and ring compounds (benzene, borazine and cyclopentadienyl anion) have been studied by theoretical calculations to understand the interplay between the tetrel bond and pnicogen bond interactions. The bonding strength of intermolecular interactions in these complexes is analyzed by means of atoms in molecules (AIM), natural bond orbital (NBO) and noncovalent interaction (NCI) index methods. The binary tetrel-bonded and pnicogen-bonded complexes can be classified as an n-type or π-type complex according to the orbital interactions involved in the complexes. Three binding modes can be distinguished according to the interplay between interactions for the ternary complexes. The binding mode A is characterized by the interplay between π-type tetrel bond and n-type pnicogen bond; binding mode B is characterized by the interplay between π-type pnicogen bond and n-type tetrel bond, and binding mode C is characterized by the interplay between π-type tetrel bond and π-type pnicogen bond. The binding modes A and B exhibit the synergistic interplay effect, while the antagonistic effect is reflected in mode C. The synergistic effect in binding modes A and B is stronger than antagonistic effect in mode C, and the synergistic effect in binding mode B is stronger than that in mode A.


Tetrel bond Pnicogen bond AIM NBO NCI 



  1. 1.
    Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016). Acc. Chem. Res. 49:1061–1069PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Vallavoju N, Sivaguru J (2014). Chem. Soc. Rev. 43:4084–4101PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016). Chem. Rev. 116:5464–5519PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, OxfordCrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS, Clark T (2010). Phys. Chem. Chem. Phys. 12:7748–7757PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sarwar MG, Dragisic B, Sagoo S, Taylor MS (2010). Chem. Int. Ed. 49:1674–1677CrossRefGoogle Scholar
  7. 7.
    Kilah NL, Wise MD, Serpell CJ, Thompson AL, White NG, Christensen KE, Beer PD (2010). J. Am. Chem. Soc. 132:11893–11895PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hernandes MZ, Cavalcanti SMT, Moreira DRM, de Azevedo Jr WF, Leite ACL (2010). Curr. Drug Targets 11:303–314PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008). Angew. Chem. Int. Ed. 47:6114–6127CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS, Concha MC (2007). J. Mol. Model. 13:643–650PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Clark T, Hennemann M, Murray JS, Politzer P (2007). J. Mol. Model. 13:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Politzer P, Murray JS, Clark T (2013). Phys. Chem. Chem. Phys. 15:11178–11189PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bauzá A, Mooibroek TJ, Frontera A (2013). Angew. Chem. Int. Ed. 52:12317–12321CrossRefGoogle Scholar
  14. 14.
    Murray JS, Lane P, Politzer P (2009). J. Mol. Model. 15:723–729PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mani D, Arunan E (2014). J. Phys. Chem. A 118:10081–10089PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Li QZ, Guo X, Yang X, Li WZ, Cheng JB, Li HB (2014). Phys. Chem. Chem. Phys. 16:11617–11625PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Thomas SP, Pavan MS, Row TNG (2014). Chem. Commun. 50:49–51CrossRefGoogle Scholar
  18. 18.
    McDowell SAC, Joseph JA (2014). Phys. Chem. Chem. Phys. 16:10854–10860PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Li QZ, Zhuo HY, Li HB, Liu ZB, Li WZ, Cheng JB (2015). J. Phys. Chem. A 119:2217–2224PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Southern SA, Bryce DL (2015). J. Phys. Chem. A 119:11891–11899PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Scheiner S (2015). J. Phys. Chem. A 119:9189–9199PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Azofra LM, Scheiner S (2015). J. Chem. Phys. 142:034307PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bauzá A, Mooibroek TJ, Frontera A (2016). Chem. Rec. 16:473–487PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bauzá A, Frontera A, Mooibroek TJ (2016). Phys. Chem. Chem. Phys. 18:1693–1698PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liu MX, Li QZ, Li WZ, Cheng JB (2017). Struct. Chem. 28:823–831CrossRefGoogle Scholar
  26. 26.
    Liu MX, Li QZ, Cheng JB, Li WZ, Li HB (2016). J. Chem. Phys. 145:224310PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bene JED, Alkorta I, Elguero J (2017). J. Phys. Chem. A 121:8136–8146PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu MX, Li QZ, Scheiner S (2017). Phys. Chem. Chem. Phys. 19:5550–5559PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Legon AC (2017). Phys. Chem. Chem. Phys. 19:14884–14896PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Scheiner S (2018). J. Comput. Chem. 39:500–510PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zierkiewicz W, Michalczyk M, Scheiner S (2018). Phys. Chem. Chem. Phys. 20:8832–8841PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wei YX, Li QZ, Scheiner S (2018). ChemPhysChem 19:736–743PubMedCrossRefGoogle Scholar
  33. 33.
    Chen YS, Yao LF, Lin XF (2014). Comput. Theor. Chem. 1036:44–50CrossRefGoogle Scholar
  34. 34.
    Wu JY, Yan H, Zhong AG, Chen H, Jin YX, Dai GL (2019). J. Mol. Model. 25:28PubMedCrossRefGoogle Scholar
  35. 35.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011). Chem.-Eur. J. 17:6034–6038PubMedCrossRefGoogle Scholar
  36. 36.
    Solimannejad M, Gharabaghi M, Scheiner S (2011). J. Chem. Phys. 134:024312PubMedCrossRefGoogle Scholar
  37. 37.
    Scheiner S (2011). J. Chem. Phys. 134:094315PubMedCrossRefGoogle Scholar
  38. 38.
    Scheiner S (2011). J. Phys. Chem. A 115:11202–11209PubMedCrossRefGoogle Scholar
  39. 39.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012). J. Phys. Chem. A 116:2547–2553PubMedCrossRefGoogle Scholar
  40. 40.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012). ChemPhysChem 13:1205–1212PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012). J. Phys. Chem. A 116:3056–3060PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE, Chem J (2012). Theor. Comp. 8:2320–−2327Google Scholar
  43. 43.
    An XL, Li R, Li QZ, Liu XF, Li WZ, Cheng JB (2012). J. Mol. Model. 18:4325–4332PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Alkorta I, Sanchez−Sanz G, Elguero J, Del Bene JE (2013). J. Phys. Chem. A 117:183–−191PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Liu MX, Li QZ, Li WZ, Cheng JB (2016). J. Mol. Graphics Model. 65:35–42CrossRefGoogle Scholar
  46. 46.
    Liu MX, Yang L, Li QZ, Li WZ, Cheng JB, Xiao B, Yu XF (2016). J. Mol. Model. 22:192PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McDowell SAC (2014). Chem. Phys. Lett. 598:1–4CrossRefGoogle Scholar
  48. 48.
    Esrafili MD, Mohammadirad N, Solimannejad M (2015). Chem. Phys. Lett. 628:16–20CrossRefGoogle Scholar
  49. 49.
    Solimannejad M, Orojloo M, Amani S (2015). J. Mol. Model. 21:183PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yourdkhani S, Korona T, Hadipour NL (2015). J. Comput. Chem. 36:2412–2428PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Marín-Luna M, Alkorta I, Elguero J (2016). J. Phys. Chem. A 120:648–656PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Esrafili MD, Mohammadian-Sabet F (2016). Mol. Phys. 114:1528–1538CrossRefGoogle Scholar
  53. 53.
    Rezaei Z, Solimannejad M, Esrafili MD (2015). Comput. Theor. Chem. 1074:101–106CrossRefGoogle Scholar
  54. 54.
    Vatanparast M, Parvini E, Bahadori A (2016). Mol. Phys. 114:1478–1484CrossRefGoogle Scholar
  55. 55.
    Li W, Zeng Y, Li X, Sun Z, Meng L (2016). Phys. Chem. Chem. Phys. 18:24672–24680PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yang X, Zhou PP, Yang F, Zhou DG, Yan CX, Zheng PJ, Dai Y (2016). ChemistrySelect 1:1741–1750CrossRefGoogle Scholar
  57. 57.
    Xu HL, Cheng JB, Yang X, Liu ZB, Bo Xiao QZL (2017). RSC Adv. 7:21713–21720CrossRefGoogle Scholar
  58. 58.
    Frisch MJ et al (2010) Gaussian 09. Gaussian, Inc, WallingfordGoogle Scholar
  59. 59.
    Boys SF, Bernardi F (1970). Mol. Phys. 19:553–566CrossRefGoogle Scholar
  60. 60.
    GaussView, Version 5, R. Dennington, T. Keith, J.S. Millam, Semichem Inc., Shawnee Mission KS, 2009Google Scholar
  61. 61.
    Biegler-König F (2000) AIM2000. University of Applied Sciences, BielefeldGoogle Scholar
  62. 62.
    Weinhold F, Landis C (2012) Discovering chemistry with natural bond orbitals. John Wiley & Sons, Inc, HobokenCrossRefGoogle Scholar
  63. 63.
    Lu T, Chen FW (2012). J. Comput. Chem. 33:580–592PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Humphrey W, Dalke A, Schulten K (1996). J. Mol. Graph. 14:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhuo HY, Li QZ, Li WZ, Cheng JB (2014). Phys. Chem. Chem. Phys. 16:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Schleyer P v R, Jiao HJ, Hommes NJR v E, Malkin VG, Malkina OL (1997). J. Am. Chem. Soc. 119:12669–12670CrossRefGoogle Scholar
  67. 67.
    Zhang JR, Hu QZ, Li QZ, Scheiner S, Liu SF (2019). Int. J. Quantum Chem. 119:e25910CrossRefGoogle Scholar
  68. 68.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010). J. Am. Chem. Soc. 132:6498–6506PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry & Environmental ScienceQujing Normal UniversityQujingChina

Personalised recommendations