Advertisement

MD simulation of methane adsorption properties on pillared graphene bubble models

  • Hao Jiang
  • Xin-Lu ChengEmail author
Original Paper
  • 39 Downloads

Abstract

Pillared graphene bubble framework is selected as the methane storage vessel in this article. All investigations of methane adsorption are executed by using the MD simulations. The average adsorption energy of methane on different bubble models is between − 4.3 and − 5.2 kcal/mol, which is desirable for absorbing and desorbing gas molecules. The methane adsorption properties of bubble models are obviously different from those of pillared graphene. The effect of graphene interlayer spacing on methane adsorption in selected bubble models can be negligible. Nevertheless, bubble density and temperature have a significant influence on methane adsorption. The amount of adsorbed methane on pillared bubble models at room temperature can reach up to 18.2 mmol/g. This performance of methane adsorption on pillared graphene bubble structures may bring new enlightenment to the investigations of gas storage materials.

Keywords

Methane storage Pillared graphene bubble MD simulation Adsorption energy 

Notes

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (11774248 and 11474207). Meanwhile, we are grateful to the support of our calculation from Analytical & Testing Center Sichuan University, People’s Republic of China.

Supplementary material

894_2019_4132_MOESM1_ESM.doc (3.7 mb)
ESM 1 (DOC 3780 kb)

References

  1. 1.
    Chang GG, Wen HM, Li B, Zhou W, Wang HL, Alfooty K, Bao ZB, Chen BL (2016) A fluorinated metal−organic framework for high methane storage at room temperature. Cryst. Growth Des. 16:3395–3399CrossRefGoogle Scholar
  2. 2.
    Ning G, Xu C, Mu L, Chen G, Wang G, Gao J et al (2012) High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chem. Commun. 48:6815–6817CrossRefGoogle Scholar
  3. 3.
    Tian T, Zeng ZX, Vulpe D, Casco ME, Divitini G, Midgley PA, Silvestre-Albero J, Tan JC, Moghadam PZ, David FJ (2018) A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17:174–179CrossRefGoogle Scholar
  4. 4.
    He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal_organic frameworks. Chem. Soc. Rev. 43:5657–5678CrossRefGoogle Scholar
  5. 5.
    Policicchio A, Maccallini E, Agostino RG, Ciuchi F, Aloise A, Giordano G (2013) Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel 104:813–821CrossRefGoogle Scholar
  6. 6.
    Khalili S, Khoshandam B, Jahanshahi M (2016) A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation. Korean J. Chem. Eng. 33(10):2943–2952CrossRefGoogle Scholar
  7. 7.
    Sawant SY, Munusamy K, Somani RS, John M, Newalkar BL, Bajaj HC (2017) Precursor suitability and pilot scale production of super activated carbon for greenhouse gas adsorption and fuel gas storage. Chem. Eng. J. 315:415–425CrossRefGoogle Scholar
  8. 8.
    Hu JH, Zhao JF, Yan TY (2015) Methane uptakes in covalent organic frameworks with double halogen substitution. J. Phys. Chem. C 119(4):2010–2014CrossRefGoogle Scholar
  9. 9.
    Vicent-Luna JM, Luna-Triguero A, Calero S (2017) Storage and separation of carbon dioxide and methane in hydrated covalent organic frameworks. J. Phys. Chem. C 120(41):23756–23762CrossRefGoogle Scholar
  10. 10.
    Sharma A, Babarao R, Medhekar NV, Malani A (2018) Methane adsorption and separation in slipped and functionalized covalent organic frameworks. Ind. Eng. Chem. Res. 57(14):4767–4778.CrossRefGoogle Scholar
  11. 11.
    Wu Y, Tang D, Verploegh RJ, Xi HX, Sholl DS (2017) Impacts of gas impurities from pipeline natural gas on methane storage in metal−organic frameworks during long-term cycling. J. Phys. Chem. C 121:15735–15745CrossRefGoogle Scholar
  12. 12.
    Yan Y, Kolokolov DI, Silva ID, Stepanov AG, Blake AJ, Dailly A, Manuel P, Tang CC, Yang SH, Schröder M Porous metal–organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage. J. Am. Chem. Soc.  https://doi.org/10.1021/jacs.7b05453 CrossRefGoogle Scholar
  13. 13.
    Muller P, Bon V, Senkovska I, Getzschmann J, Weiss MS, Kaskel S (2017) Crystal engineering of phenylenebis(azanetriyl)tetrabenzoate based metal−organic frameworks for gas storage applications. Cryst. Growth Des. 17:3221–3228CrossRefGoogle Scholar
  14. 14.
    Chen CX, Wei ZW, Jiang JJ, Zheng SP, Wang HP, Qiu QF, Cao CC, Fenske D, Su CY (2017) Dynamic spacer installation for multirole metal−organic frameworks: a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity. J. Am. Chem. Soc. 139:6034–6037CrossRefGoogle Scholar
  15. 15.
    Lin K, Yuan Q, Zhao YP (2017) Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput. Mater. Sci. 133:99–107CrossRefGoogle Scholar
  16. 16.
    Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N (2017) Improvement of methane storage in nitrogen, boron and lithium doped pillared graphene: a hybrid molecular simulation. J. Nat. Gas Sci. Eng. 46:265–274CrossRefGoogle Scholar
  17. 17.
    Pedrielli A, Taioli S, Garberoglio G, Pugno NM (2018) Gas adsorption and dynamics in pillared graphene frameworks. Microporous Mesoporous Mater. 257:222–231CrossRefGoogle Scholar
  18. 18.
    Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N (2015) Hybrid molecular simulation of methane storage inside pillared graphene. J. Chem. Phys. 142:234704CrossRefGoogle Scholar
  19. 19.
    Mahmoudian L, Rashidi A, Dehghani H, Rahighi R (2016) Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption. Chem. Eng. J. 304:784–792CrossRefGoogle Scholar
  20. 20.
    Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N (2017) Improvement of methane uptake inside graphene sheets using nitrogen,boron and lithium-doped structures: a hybrid molecular simulation. Korean J. Chem. Eng. 34(3):876–884CrossRefGoogle Scholar
  21. 21.
    Jiang H, Cheng XL, Zhang H, Tang YJ, Zhao CX (2015) Molecular dynamic simulation of high-quality hydrogen storage in pillared bilayer graphene bubble structure. Comput. Theor. Chem. 1068:97–103CrossRefGoogle Scholar
  22. 22.
    Tomori H, Kanda A, Goto H, Ootuka Y, Tsukagoshi K, Moriyama S, Watanabe E, Tsuya D (2011) Introducing nonuniform strain to graphene using dielectric Nanopillars. Appl. Phys. Express 4:0751021–0751023CrossRefGoogle Scholar
  23. 23.
    Zamborlini G, Imam M, Patera LL, Menteş TO, Stojić N, Africh C, Sala A, Binggeli N, Comelli G, Locatelli A (2015) Nanobubbles at GPa pressure under graphene. Nano Lett. 15:6162–6169CrossRefGoogle Scholar
  24. 24.
    Khestanova E, Guinea F, Fumagalli L, Geim AK, Grigorieva IV (2016) Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7:1–10CrossRefGoogle Scholar
  25. 25.
    Ghorbanfekr-Kalashami H, Vasu KS, Nair RR, Peeters FM, Neek-Amal M (2017) Dependence of the shape of graphene nanobubbles on trapped. substance 8:1–11Google Scholar
  26. 26.
    Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z (2017) Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett. 119:0361011–0361017Google Scholar
  27. 27.
    Agrawal BK, Agrawal S, Singh S, Srivastava R (2006) Ab initio study of curvature effects on the physical properties of CH4-doped nanotubes and nanoropes. J. Phys. Condens. Matter 18(19):4649–4675CrossRefGoogle Scholar
  28. 28.
    Shayeganfar F, Neek-Amal M (2012) Methane molecule over the defected and rippled graphene sheet. Solid State Commun. 152:1493–1496CrossRefGoogle Scholar
  29. 29.
    Smith DGA, Patkowski K (2014) Toward an accurate description of methane physisorption on carbon nanotubes. J. Phys. Chem. C 118:544–550CrossRefGoogle Scholar
  30. 30.
    Waqar Z (2007) Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. J. Mater. Sci. 42:1169–1176CrossRefGoogle Scholar
  31. 31.
    Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Castro Neto AH, Crommie MF (2010) Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329:544–546CrossRefGoogle Scholar
  32. 32.
    Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338–7364CrossRefGoogle Scholar
  33. 33.
    Rigby D, Sun H, Eichinger BE (1997) Computer simulations of poly(ethylene oxide): force field, PVT diagram and cyclization behaviour. Polym. Int. 44:311–330CrossRefGoogle Scholar
  34. 34.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1–19CrossRefGoogle Scholar
  35. 35.
    Zheng M, Li XX, Guo L (2013) Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics. J. Mol. Graph. Model 41:1–11CrossRefGoogle Scholar
  36. 36.
    Saeid Y, Fatemeh G (2016) Simulation of methane adsorption and diffusion in a carbon nanotube channel. Chem. Eng. Sci. 140:62–70CrossRefGoogle Scholar
  37. 37.
    Wu HA, Chen J, Liu H (2015) Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. J. Phys. Chem. C 119:13652–13657CrossRefGoogle Scholar
  38. 38.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38CrossRefGoogle Scholar
  39. 39.
    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603–619CrossRefGoogle Scholar
  40. 40.
    Lu XQ, Jin DL, Wei SX, Wang ZJ, An CH, Guo WY (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J. Mater. Chem. A 3:12118–12132CrossRefGoogle Scholar
  41. 41.
    Okamoto Y, Miyamoto Y (2001) Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105:3470–3474CrossRefGoogle Scholar
  42. 42.
    Chandrakumar KRS, Srinivasu K, Ghosh SK (2008) Nanoscale curvature-induced hydrogen adsorption in alkali metal doped carbon nanomaterials. J. Phys. Chem. C 112:15670–15679CrossRefGoogle Scholar
  43. 43.
    Jiang H, Cheng XL, Zhang H, Tang YJ, Zhao CX (2015) Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Struct. Chem. 26:531–537CrossRefGoogle Scholar
  44. 44.
    Lan J, Cao D, Wang W (2009) High uptakes of methane in Li-doped 3D covalent organic frameworks. Langmuir 26(1):220–226CrossRefGoogle Scholar
  45. 45.
    Peng X, Zhou J, Wang W, Cao D (2010) Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon 48:3760–3768CrossRefGoogle Scholar
  46. 46.
    Razmkhah M, Moosavi F, Mosavian MTH, Ahmadpour A (2018) Tunable gas adsorption in graphene oxide framework. Appl. Surf. Sci. 443:198–208CrossRefGoogle Scholar
  47. 47.
    Szczęśniak B, Choma J, Jaroniec M (2018) Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2. Microporous Mesoporous Mater. 261:105–110CrossRefGoogle Scholar
  48. 48.
    Peredo-Mancilla D, Hort C, Jeguirim M, Ghimbeu CM, Limousy L, Bessieres D (2018) Experimental determination of the CH4 and CO2 pure gas adsorption isotherms on different activated carbons. J. Chem. Eng. Data 63:3027–3034CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations