First-principles investigation on cluster-assembled silicon nanotubes with Eu atoms encapsulation

  • Zhaohua ChenEmail author
  • Zun Xie
Original Paper


Two kinds of dimers consisting of two endohedral Eu@Si16 cages, Eu2@Si32 and Eu2@Si28, have been predicted by using density functional theory. The structural stabilities, electronic structures, and magnetic properties have been examined at the DFT-GGA level. The results show that each of the central Eu atoms in Eu2@Si32 and Eu2@Si28 keeps spin magnetic moment of about 6.9 μB, respectively. Analysis of electronic structures shows that sp2-like hybridizations induced by the central Eu atoms arise in Si-Si bonds, which remarkably improve the stabilities of both Si32 and Si28 clusters. Furthermore, two types of assembled Si nanotubes (Eu@SiNT-1 and Eu@SiNT-2) with Eu atoms encapsulated are gained; it is found that both of them are of metallic conductive character and have total magnetic moment of 14 μB. All these structures may be rather tempting for the future spintronic devices and high-density magnetic storage materials.

Graphical abstract

The electronic and magnetic properties of cluster-assembled Eu@SiNTs


Density functional theory Cluster assembled Silicon nanotube Electronic structure Magnetic properties 



We would like to thank Dr. Qing-Fang Cheng for his help with the language.

Funding information

This work is financially supported by the Natural Science Foundation of Hebei Province for Distinguished Young Scholar (Grant No. A2018205174).


  1. 1.
    Sun Q, Wang Q, Briere TM, Kumar V, Kawazoe Y, Jena P (2002) First-principles calculations of metal stabilized Si20 cages. Phys Rev B 65:235417-1-5Google Scholar
  2. 2.
    Gao Y, Zeng XC (2005) M4@Si28 (M=Al,Ga): metal-encapsulated tetrahedral silicon fullerene. J Chem Phys 123:204325-1-4Google Scholar
  3. 3.
    Ngan VT, Janssens E, Claes P, Lyon JT, Fielicke A, Nguyen MT, Lievens P (2012) High magnetic moments in manganese-doped silicon clusters. Chem Eur J 18:15788–15793CrossRefGoogle Scholar
  4. 4.
    Kumar V, Kawazoe Y (2001) Metal-encapsulated fullerenelike and cubic caged clusters of silicon. Phys Rev Lett 87:045503-1-4Google Scholar
  5. 5.
    He J, Wu K, Sa R, Li Q, Wei Y (2010) (Hyper)polarizabilities and optical absorption spectra of MSi12 clusters (M = Sc-Zn): a theoretical study. Chem Phys Lett 490:132–137CrossRefGoogle Scholar
  6. 6.
    Felser C, Fecher GH (2013) Spintronics: from materials to devices. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Fang L, Bozdag KD, Chen CY, Truitt P, Epstein A, Johnston-Halperin E (2011) Electrical spin injection from an organic-based ferrimagnet in a hybrid organic-inorganic heterostructure. Phys Rev Lett 106:156602-1-4CrossRefGoogle Scholar
  8. 8.
    Moodera JS, Santos TS, Nagahama T (2007) The phenomena of spin-filter tunneling. J Phys Condens Matter 19:165202-1-24CrossRefGoogle Scholar
  9. 9.
    Grubisic A, Wang HP, Ko YJ, Bowena KH (2008) Photoelectron spectroscopy of europium-silicon cluster anions, EuSin (3≤n≤17). J Chem Phys 129:054302CrossRefGoogle Scholar
  10. 10.
    Kumar V, Singh AK, Kawazoe Y (2006) Charged and magnetic fullerenes of silicon by metal encapsulation: predictions from ab initio calculations. Phys Rev B 74:125411-1-5Google Scholar
  11. 11.
    Guo L, Zheng X, Zeng Z, Zhang C (2012) Spin orbital effect in lanthanides doped silicon cage clusters. Chem Phys Lett 550:134–137CrossRefGoogle Scholar
  12. 12.
    Sun Q, Wang Q, Briere TM, Kawazoe Y (2002) Dimer interactions of magic W@Si12 clusters. J Phys Condens Matter 14:4503–4508CrossRefGoogle Scholar
  13. 13.
    Wu X, Zhou S, Huang XM, Chen MD, King RB, Zhao JJ (2018) Revisit of large-gap Si16 clusters encapsulating group-IV metal atoms (Ti, Zr, Hf). J Comput Chem 39:2268–2272CrossRefGoogle Scholar
  14. 14.
    Lu J, Nagase S (2003) Structural and electronic properties of metal-encapsulated silicon clusters in a large size range. Phys Rev Lett 90:115506-1-4Google Scholar
  15. 15.
    Reveles JU, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74:035435-1-6Google Scholar
  16. 16.
    Torres MB, Fernández EM, Balbás LC (2007) Theoretical study of isoelectronic SinM clusters (M=Sc, Ti, V+, n=14-18). Phys Rev B 75:205425-1-12CrossRefGoogle Scholar
  17. 17.
    Peng Q, Shen J, Chen NX (2008) Geometry and electronic stability of tungsten encapsulated silicon nanotubes. J Chem Phys 129:034704-1-9CrossRefGoogle Scholar
  18. 18.
    Wang J, Ma QM, Xie Z, Liu Y, Li YC (2007) From SinNi to Ni@Sin: an investigation of configurations and electronic structure. Phys Rev B 76:035406-1-8Google Scholar
  19. 19.
    Ji WX, Luo CL (2010) Density functional investigation of hexagonal prism transition metal encapsulated cage M2Si18 (M=Sc-Zn) clusters. Model Simul Mater Sci Eng 18:025011-1-9CrossRefGoogle Scholar
  20. 20.
    Sporea C, Rabilloud F, Aubert-Frécon M (2007) Charge transfers in mixed silicon-alkali clusters and dipole moments. THEOCHEM J Mol Struct 802:85–90CrossRefGoogle Scholar
  21. 21.
    Wei S, Barnett RN, Landman U (1997) Energetics and structures of neutral and charged Sin (n ≤ 10) and sodium-doped Si n Na clusters. Phys Rev B 55:7935–7944CrossRefGoogle Scholar
  22. 22.
    Singh AK, Kumar V, Brieve TM, Kawazoe Y (2002) Cluster assembled metal encapsulated thin nanotubes of silicon. Nano Lett 2:1243–1248CrossRefGoogle Scholar
  23. 23.
    Zhan SC, Li BX, Yang JS (2007) Study of aluminum-doped silicon clusters. Physica B 387:421–429CrossRefGoogle Scholar
  24. 24.
    Kumar V, Kawazoe Y (2003) Hydrogenated silicon fullerenes: effects of H on the stability of metal-encapsulated silicon clusters. Phys Rev Lett 90:055502-1-4CrossRefGoogle Scholar
  25. 25.
    Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRefGoogle Scholar
  26. 26.
    Jungnickel G, Frauenheim T, Jackson KA (2000) Structure and energetics of SinNm clusters: growth pathways in a heterogenous cluster system. J Chem Phys 112:1295–1305CrossRefGoogle Scholar
  27. 27.
    Majumder C, Kulshreshtha SK (2004) Impurity-doped Si10 cluster: understanding the structural and electronic properties from first-principles calculations. Phys Rev B 70:245426-1-7Google Scholar
  28. 28.
    Huda MN, Ray AK (2004) Carbon dimer in silicon cage: a class of highly stable silicon carbide clusters. Phys Rev A 69:011201(R)-1-4CrossRefGoogle Scholar
  29. 29.
    Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86:1733–1736CrossRefGoogle Scholar
  30. 30.
    Wang J, Ma QM, Xu RP, Liu Y, Li YC (2009) 3d transition metals: which is the ideal guest for Sin (n=15, 16) cages. Phys Lett A 373:2869–2875CrossRefGoogle Scholar
  31. 31.
    Khanna SN, Rao BK, Jena P (2002) Magic numbers in metalloinorganic clusters: chromium encapsulated in silicon cages. Phys Rev Lett 89:016803-1-4CrossRefGoogle Scholar
  32. 32.
    Dognon JP, Clavaguéra C, Pyykkö P (2012) A new, centered 32-electron system: the predicted [U@Si20]6−-like isoelectronic series. Chem Sci 3:2843–2848CrossRefGoogle Scholar
  33. 33.
    Peng Q, Shen J (2008) Growth behavior of La@Sin (n=1-21) metal-encapsulated clusters. J Chem Phys 128:084711-1-11CrossRefGoogle Scholar
  34. 34.
    Wang J, Liu JH (2008) Investigation of size-selective Zr2@Sin (n=16-24) caged clusters. J Phys Chem A 112:4562–4567CrossRefGoogle Scholar
  35. 35.
    Wang J, Liu JH (2008) Novel bi-transition metallic encapsulated naphthalene-like Si20 prismatic cage: a DFT investigation. J Comput Chem 30:1103–1110CrossRefGoogle Scholar
  36. 36.
    Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127:4998–4999CrossRefGoogle Scholar
  37. 37.
    Beck SM (1989) Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface. J Chem Phys 90:6306–6312CrossRefGoogle Scholar
  38. 38.
    Beck SM (1987) Studies of silicon cluster–metal atom compound formation in a supersonic molecular beam. J Chem Phys 87:4233–4234CrossRefGoogle Scholar
  39. 39.
    Tsunoyama H, Akatsuka H, Shibuta M, Iwasa T, Mizuhata Y, Tokitoh N, Nakajima A (2017) Development of integrated dry-wet synthesis method for metal encapsulating silicon cage superatoms of M@Si16 (M=Ti and Ta). J Phys Chem C 121:20507–20516CrossRefGoogle Scholar
  40. 40.
    Kumar V (2006) Alchemy at the nanoscale: magic heteroatom clusters and assemblies. Comput Mater Sci 36:1–11CrossRefGoogle Scholar
  41. 41.
    Pham HT, Dang TM, Duong LV, Tamab NM, Nguyen MT (2018) B3@Si12 +: strong stabilizing effects of a triatomic cyclic boron unit on tubular silicon clusters. Phys Chem Chem Phys 20:7588–7592CrossRefGoogle Scholar
  42. 42.
    Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Magnetism in transition-metal-doped silicon nanotubes. Phys Rev Lett 91:146802-1-4Google Scholar
  43. 43.
    Antonis NA, Giannis M, George EF, Madhu M (2002) Stabilization of Si-based cage clusters and nanotubes by encapsulation of transition metal atoms. New J Phys 4:78-1-14Google Scholar
  44. 44.
    Ma L, Zhao JJ, Wang JG, Wang BL, Lu QL, Wang GH (2006) Growth behavior and magnetic properties of SinFe (n=2-14) clusters. Phys Rev B 73:125439-1-8Google Scholar
  45. 45.
    Wang J, Zhao J, Ma L, Wang G, King RB (2007) Stability and magnetic properties of Fe encapsulating in silicon nanotubes. Nanotechnology 18:235705-1-8Google Scholar
  46. 46.
    Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ (2014) Smallest fullerene-like silicon cage stabilized by a V2 unit. J Chem Phys 140:024308CrossRefGoogle Scholar
  47. 47.
    Wang J, Liu Y, Li YC (2010) Magnetic silicon fullerene. Phys Chem Chem Phys 12:11428–11431CrossRefGoogle Scholar
  48. 48.
    Guo LJ, Zheng XH, Zeng Z (2011) Transition metal encapsulated hydrogenated silicon nanotubes: silicon-based half-metal. Phys Lett A 375:4209–4213CrossRefGoogle Scholar
  49. 49.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  50. 50.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  52. 52.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  53. 53.
    Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125-1-9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shijiazhuang Institute of TechnologyShijiazhuangChina
  2. 2.College of Physics Science and Information Engineering and Hebei Advanced Thin Films LaboratoryHebei Normal UniversityShijiazhuangChina

Personalised recommendations