Advertisement

Theoretical study of the electronic structure of mono-bromide of lanthanum molecule including spin-orbit coupling effects

  • Yaman HamadeEmail author
  • Fadia Taher
  • Yehya Haidar
  • Ahmed Rhallabi
Original Paper
  • 18 Downloads

Abstract

Among the family of lanthanide halides compounds, this work is devoted to the third halogen bromine. The presented lanthanum bromide LaBr molecule has a remarkable scientific interest regarding the other molecules because it presents few experimental studies and only one theoretical study. The theoretical electronic structure of the LaBr molecule is achieved by using the post-Hartree–Fock methods manifested by the complete active space self consistent field (CAS-SCF) method and the multi reference configuration interaction with single and double excitation (MRCI-SD) method. All of these calculations are performed via the quantum chemistry software MOLPRO. We predicted for the first time in the literature, 24 lowest-lying electronic states in the representation 2S+ 1Λ(±) and their corresponding components in the representation Ω(±) when taking into account the spin-orbit coupling (SOC), situated below 22,000 cm− 1. We calculated the spectroscopic constants for both cases (without/with SOC effects) related to the 13 singlet and 11 triplet states and for their components. We drew also in this paper the potential energy curves (PECs in a range of internuclear distance R varying from 2.00 to 4.22 Å.

Graphical Abstract

Potential energy curves for 13 singlet electronic states of LaBr

Keywords

Diatomic molecules Ab initio methods Theoretical electronic states Spectroscopic constants Spin-orbit coupling 

Notes

References

  1. 1.
    Rubinoff Daryl S, Evans Corey J, Gerry Michael CL (2003) The pure rotational spectra of the lanthanum monohalides, LaF, LaCl, LaBr, LaI. J Mol Spectrosc 218:169–179CrossRefGoogle Scholar
  2. 2.
    Barrow RF, Bastin MW, Moore DLG (1967) Electronic states of states of gaseous fluorides of scandium, yttrium and lanthanum. Nature 215:1072–1073CrossRefGoogle Scholar
  3. 3.
    Schall H, Linton C, Field RW (1983) Laser spectroscopy of LaF: determination of the separation of the singlet and triplet state manifolds. J Mol Spectrosc 100:437–448CrossRefGoogle Scholar
  4. 4.
    Hildenbrand DL, Lau KH (1995) Thermochemical properties of the gaseous scandium, yttrium and lanthanum fluoride. J Chem Phys 102:3769–3775CrossRefGoogle Scholar
  5. 5.
    Kaledin LA, Kaledin AL, Heaven MC (1997) Laser absorption spectroscopy of LaF: analysis of B 1π − X 1Σ+ transition. J Mol Spectrosc 182:50–57CrossRefGoogle Scholar
  6. 6.
    Bernard A, Effantin C, d’Incan J, Verg’es J (2000) The (1)1π, (2)1Σ+X 1Σ+ transition of LaF. J Mol Spectrosc 202:163–165CrossRefGoogle Scholar
  7. 7.
    Xin J, Klynning L (1994) Fourier transform spectroscopy of LaCl: rotational analyses of the infrared bands systems. Phys Scripta 49:209–213CrossRefGoogle Scholar
  8. 8.
    Cao X, Dolg M (2005) Pseudopotential studies on the electronic structure of lanthanum monohalides LaF, LaCl, LaBr and LaI. J Theor Comput Chem 4:583–592CrossRefGoogle Scholar
  9. 9.
    Fahs H, Allouche AR, Korek M, Aubert Frecon M (2002) Theoretical electronic structure of the lowest-lying states of the LaF molecule. J Chem Phys 117(8):3715–3720CrossRefGoogle Scholar
  10. 10.
    Taher-Mansour F, Allouche AR, Aubert-Frecon M (2003) Theoretical electronic structure of the lowest-lying states of the LaI molecule. J Mol Spectrosc 221:1–6CrossRefGoogle Scholar
  11. 11.
    Fahs H, Korek M, Allouche AR, Aubert-Frecon M (2004) Theoretical electronic structure of the lowest-lying states of the LaCl molecule. J Chem Phys 299:97–103Google Scholar
  12. 12.
    Hamade Y, El Sobbahi A (2018) Theoretical study of the electronic structure of mono-chloride of lanthanum molecule including spin-orbit coupling effect. J Mol Model 24:100–113CrossRefGoogle Scholar
  13. 13.
    Hamade Y, Taher F, Choueib M, Monteil Y (2009) Theoretical electronic investigation of the low-lying electronic states of LuF molecule. Can J Phys 87:1163–1169CrossRefGoogle Scholar
  14. 14.
    Hamade Y, Bazzi H, Sidawi J, Taher F, Monteil Y (2012) Ab initio study of the lowest-lying electronic states of LuCl molecule. J Phys Chem A 116:12123–12128CrossRefGoogle Scholar
  15. 15.
    Davidson ER, Silver DW (1977) Size consistency in the dilute helium gas electronic structure. Chem Phys Lett 52(3):403–406CrossRefGoogle Scholar
  16. 16.
    Martin WC, Zalubas R, Hagan L (1978) Nat Stand Ref Data Ser, NSRDS-NBS60,422 pp Nat Bur StandGoogle Scholar
  17. 17.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) . Can J Chem 70:612–630CrossRefGoogle Scholar
  18. 18.
    Cao X, Dolg M (2001) Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J Chem Phys 115:7348–7355CrossRefGoogle Scholar
  19. 19.
    Martin JML, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J Chem Phys 114:3408–3420CrossRefGoogle Scholar
  20. 20.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J Chem Phys 119:11099–11113CrossRefGoogle Scholar
  21. 21.
    MOLPRO, a package of ab initio programs, H. -J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see http://www.molpro.net
  22. 22.
    Blondel C, Cacciani P, Delsart C, Trainham R (1989) High-resolution determination of the electron affinity of fluorine and bromine using crossed ion and laser beams. Phys Rev A 40:3698–3701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MQMM lab associated to the research platformTR2NLebanese University, faculty of Engineering branch IIIRafic Hariri Campus-HadathLebanon
  2. 2.Institut des Matériaux Jean RouxelUniversité de NantesNantesFrance
  3. 3.Petrochemistry DepartmentLebanese University, Faculty of Engineering IIIRafic Hariri Campus-HadathLebanon

Personalised recommendations