Advertisement

Stability conditions of armchair graphene nanoribbon bipolarons

  • Ana Virgínia Passos Abreu
  • Luiz Antonio Ribeiro Junior
  • Gesiel Gomes Silva
  • Marcelo Lopes Pereira Junior
  • Bernhard Georg Enders
  • Antonio Luciano Almeida Fonseca
  • Geraldo Magela e SilvaEmail author
Original Paper
  • 37 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

Graphene nanoribbons are 2D hexagonal lattices with semiconducting band gaps. Below a critical electric field strength, the charge transport in these materials is governed by the quasiparticle mechanism. The quasiparticles involved in the process, known as polarons and bipolarons, are self-interacting states between the system charges and local lattice distortions. To deeply understand the charge transport mechanism in graphene nanoribbons, the study of the stability conditions for quasiparticles in these materials is crucial and may guide new investigations to improve the efficiency for a next generation of graphene-based optoelectronic devices. Here, we use a two-dimensional version of the Su–Schrieffer–Heeger model to investigate the stability of bipolarons in armchair graphene nanoribbons (AGNRs). Our findings show how bipolaron stability is dependent on the strength of the electron–phonon interactions. Moreover, the results show that bipolarons are dynamically stable in AGNRs for electric field strengths lower than 3.0 mV/Å. Remarkably, the system’s binding energy for a lattice containing a bipolaron is smaller than the formation energy of two isolated polarons, which suggests that bipolarons can be natural quasiparticle solutions in AGNRs.

Graphical Abstract

Charge localization of bipolarons in armchair garphene nanoribbons

Keywords

Bipolarons Tight-binding Electron–phonon coupling Graphene Nanoribbons 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from Brazilian Research Councils CNPq, CAPES, and FAPDF. This research work has the support of the Brazilian Ministry of Planning, Development and Management (Grants 005/2016 DIPLA – Planning and Management Directorate, and 11/2016 SEST – State-owned Federal Companies Secretariat) and the DPGU – Brazilian Union Public Defender (Grant 066/2016). L.A.R.J., B.G.E, and G.M.S gratefully acknowledge the financial support from FAPDF grants 0193.001511/2017, 0193.001.556/2017, and 0193.00176 6/2017, respectively. L.A.R.J. and G.M.S. gratefully acknowledge, respectively, the financial support from CNPq grants 302236/2018-0 and 304637/2018-1.

References

  1. 1.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183.  https://doi.org/10.1038/nmat1849 CrossRefPubMedGoogle Scholar
  2. 2.
    Miao F, Wijeratne S, Zhang Y, Coskun UC, Bao W, Lau CN (2007) Science 317(5844):1530.  https://doi.org/10.1126/science.1144359. https://science.sciencemag.org/content/317/5844/1530 CrossRefPubMedGoogle Scholar
  3. 3.
    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Nat Nanotechnol 5:722.  https://doi.org/10.1038/nnano.2010.172 CrossRefPubMedGoogle Scholar
  4. 4.
  5. 5.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324(5932):1312.  https://doi.org/10.1126/science.1171245. https://science.sciencemag.org/content/324/5932/1312 CrossRefPubMedGoogle Scholar
  6. 6.
    Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Das Sarma S, Stormer HL, Kim P (2007) Phys Rev Lett 99:246803.  https://doi.org/10.1103/PhysRevLett.99.246803. https://link.aps.org/doi/10.1103/PhysRevLett.99.246803 CrossRefPubMedGoogle Scholar
  7. 7.
    Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Phys Rev Lett 101:096802.  https://doi.org/10.1103/PhysRevLett.101.096802. https://link.aps.org/doi/10.1103/PhysRevLett.101.096802 CrossRefPubMedGoogle Scholar
  8. 8.
    de Oliveira Neto PH, Teixeira JF, da Cunha WF, Gargano R, e Silva GM (2012) J Phys Chem Lett 3(20):3039.  https://doi.org/10.1021/jz301247u CrossRefPubMedGoogle Scholar
  9. 9.
  10. 10.
    Ribeiro LA, da Cunha WF, Fonseca ALA, e Silva GM, Stafström S (2015) J Phys Chem Lett 6(3):510.  https://doi.org/10.1021/jz502460g CrossRefPubMedGoogle Scholar
  11. 11.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Chem Rev 107(4):926.  https://doi.org/10.1021/cr050140x CrossRefPubMedGoogle Scholar
  12. 12.
  13. 13.
    Brazoviskii SA, Kirova N (1981) JETP Lett 33:4Google Scholar
  14. 14.
    Boudreaux DS, Chance RR, Brédas JL, Silbey R (1983) Phys Rev B 28:6927.  https://doi.org/10.1103/PhysRevB.28.6927. https://link.aps.org/doi/10.1103/PhysRevB.28.6927 CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Onodera Y, Okuno S (1983) J Physical Soc Japan 52(7):2478.  https://doi.org/10.1143/JPSJ.52.2478 CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Bredas JL, Street GB (1985) Acc Chem Res 18(10):309.  https://doi.org/10.1021/ar00118a005 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Silva GG, da Cunha WF, de Sousa Junior RT, Almeida Fonseca AL, Ribeiro Júnior LA, e Silva GM (2018) Phys Chem Chem Phys 20:16712.  https://doi.org/10.1039/C8CP02373E CrossRefPubMedGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Dhanker R, Gray CL, Mukhopadhyay S, Nunez S, Cheng CY, Sokolov AN, Giebink NC (2017) Nat Commun 8(1):2252.  https://doi.org/10.1038/s41467-017-02459-3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Di B, Meng Y, Wang YD, Liu XJ, An Z (2011) J Phys Chem B 115(30):9339.  https://doi.org/10.1021/jp2006342 CrossRefPubMedGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Ferreira da Cunha W, de Oliveira Neto PH, Terai A, e Silva GM (2016) Phys Rev B 94:014301.  https://doi.org/10.1103/PhysRevB.94.014301 CrossRefGoogle Scholar
  28. 28.
    da Cunha WF, de Oliveira Neto PH, Ribeiro Junior LA, e Silva GM (2019) Phys Rev B 99:035405.  https://doi.org/10.1103/PhysRevB.99.035405 CrossRefGoogle Scholar
  29. 29.
    da Cunha WF, Ribeiro LA, Fonseca ALA, Gargano R, e Silva GM (2015) Carbon 91:171.  https://doi.org/10.1016/j.carbon.2015.04.065 CrossRefGoogle Scholar
  30. 30.
    Ribeiro LA, da Silva GG, de Sousa RT, Almeida Fonseca AL, da Cunha WF, e Silva GM (2018) Sci Report 8:1914.  https://doi.org/10.1038/s41598-018-19893-y CrossRefGoogle Scholar
  31. 31.
    Silva GG, da Cunha WF, de Sousa Junior RT, Fonseca ALA, Junior LAR, e Silva GM (2018) Phys Chem Chem Phys 20:16712.  https://doi.org/10.1039/C8CP02373E CrossRefPubMedGoogle Scholar
  32. 32.
    Abreu AVP, Teixeira JF, Fonseca ALA, Gargano R, e Silva GM, Ribeiro LA (2016) J Phys Chem A 120(27):4901.  https://doi.org/10.1021/acs.jpca.5b12482 CrossRefPubMedGoogle Scholar
  33. 33.
    Stafström S (2010) Chem Soc Rev 39:2484.  https://doi.org/10.1039/b909058b CrossRefPubMedGoogle Scholar
  34. 34.
    Ribeiro LA, da Cunha WF, de Oliveria Neto PH, Gargano R, e Silva GM (2013) J New Chem 37:2829.  https://doi.org/10.1039/C3NJ00602F CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ana Virgínia Passos Abreu
    • 1
  • Luiz Antonio Ribeiro Junior
    • 1
  • Gesiel Gomes Silva
    • 1
  • Marcelo Lopes Pereira Junior
    • 1
  • Bernhard Georg Enders
    • 2
  • Antonio Luciano Almeida Fonseca
    • 1
  • Geraldo Magela e Silva
    • 1
    Email author
  1. 1.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil
  2. 2.University of Brasília, PPG-CIMABrasíliaBrazil

Personalised recommendations