Advertisement

Ab initio study on the six lowest energy conformers of iso-octane: conformational stability, barriers to internal rotation, natural bond orbital and first-order hyperpolarizability analyses, UV and NMR predictions, spectral temperature sensitivity, and scaled vibrational assignment

  • Mouhi Eddine Hachim
  • Karima Sadik
  • Said Byadi
  • Christian Van Alsenoy
  • Aziz AboulmouhajirEmail author
Original Paper
  • 21 Downloads

Abstract

In this paper, we present the quantum electronic study of iso-octane, based on MP2 and B3LYP methods using the 6-311++G(d,p) basis set. In addition to conformational stability and internal rotation barriers studies, the delocalization energies associated with the internal charge transfer (ICT) within each of the six lowest energy conformers were evaluated using NBO analysis. With the aim to differentiate even more between these conformers, the energy gap between HOMO and LUMO orbitals, chemical softness, and first-order hyperpolarizability (nonlinear optics property) were evaluated. Similarly, their spectral behavior was investigated at different levels; the ultraviolet (UV) absorption bands were assigned using molecular orbitals data obtained by TD-B3LYP calculations with 6-311++G(d,p) basis set, while carbon 13C NMR and proton 1H signal peaks were assigned using the GIAO-B3LYP/6-311++G(d,p) method. In addition, the normal mode calculations of the most and least stable conformers using a scaled force field in terms of nonredundant local symmetry coordinates were carried out to approach the vibrational spectra temperature dependency.

Keywords

Ab initio Conformational isomerism Natural bond orbital First-order hyperpolarizability UV absorption bands 13C and 1H NMR spectra Scaled vibrational analysis 

Notes

Supplementary material

894_2019_4105_MOESM1_ESM.docx (196 kb)
ESM 1 (DOCX 196 kb)

References

  1. 1.
    Dabelstein W, Reglitzky A, Schutze A, Reders K (2012) Automotive fuels. In: Ullmann’s encyclopedia of industrial chemistry. Wiely-VCH, Weinheim, pp 426–457Google Scholar
  2. 2.
    Frédéric B (2006) Mécanismes cinétiques pour l’amélioration de la sécurité des procédés d’oxydation des hydrocarbures. Dissertation, University of NancyGoogle Scholar
  3. 3.
    Chiari L et al (2014) Cross sections for positron impact with 2,2,4-trimethylpentane. J Phys Chem A 118:6466–6472CrossRefGoogle Scholar
  4. 4.
    National Center for Biotechnology Information (2018) 2,2,4-Trimethyl pentane – compound summary. PubChem Compound Database. CID=10907, https://pubchem.ncbi.nlm.nih.gov/compound/10907. Accessed 2 March 2018
  5. 5.
    Enech OC (2011) A review on petroleum: source, uses, processing, products and the environement. J Appl Sci 11(12):2084–2091CrossRefGoogle Scholar
  6. 6.
    Suvitha A, Periandy S, Govindarajan M, Gayathri P (2014) Vibrational analysis using FT-IR, FT-Raman spectra and HF - DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4 trimethyl pentane. Spectrochim Acta A Mol Biomol Spectrosc 138:900–912CrossRefGoogle Scholar
  7. 7.
    U.S. Environmental Protection Agency (1999) Integrated Risk Information System (IRIS) on 2,2,4-trimethyl pentane. National Center for Environmental Assessment, Office of Research and Development, Washington, DCGoogle Scholar
  8. 8.
    Guntram R, Peter P (1995) Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem 99:3093–3100CrossRefGoogle Scholar
  9. 9.
    Cox SR, Williams DE (1981) Representation of the molecular electrostatic potential by a net atomic charge model. J Comput Chem 2(3):304–323CrossRefGoogle Scholar
  10. 10.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78(6):4066–4073CrossRefGoogle Scholar
  11. 11.
    Keeler J (2011) Understanding NMR spectroscopy. Wiley, New YorkGoogle Scholar
  12. 12.
    Owen AE (1996) Fundamentals of UV-visible spectroscopy. Hewlett-Packard Company, Palo AltoGoogle Scholar
  13. 13.
    Mouatarif S, Aboulmouhajir A (2004) An ab initio and DFT study of the conformational stability in branched alkanes: illustration for 3 , 3-dimethylhexane. J Mol Struct 709:157–161CrossRefGoogle Scholar
  14. 14.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci 2:242–253CrossRefGoogle Scholar
  15. 15.
    The Magrid Virtual Organization of the Moroccan Grid Infrastructure (2016) CNRST/MAGRID. http://www.magrid.ma. Accessed 20 Apr 2016
  16. 16.
    Ayala PY, Scuseria GE (1999) Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems. J Chem Phys 110:3660–3671CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  18. 18.
    Krishnan R et al (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  19. 19.
    Mouatarif S, Van Alsenoy C, Aboulmouhajir A (2008) Conformational dependence of vibrational spectra in some branched octanes: 3,3- and 2,2-dimethylhexanes. Spectrosc Lett 41:87–99CrossRefGoogle Scholar
  20. 20.
    Zhurko G, Zhurko D (2017) ChemCraft, version 1.8. http://www.chemcraftprog.com. Accessed 04 May 2018
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  22. 22.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887CrossRefGoogle Scholar
  23. 23.
    Martin JML, Van Alsenoy C (2007) GAR2PED, a program to obtain a potential energy distribution from a Gaussian archive record. University of Antwerp, AntwerpGoogle Scholar
  24. 24.
    Keresztury G et al (1993) Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate. Spectrochim Acta A Mol Biomol Spectrosc 49:2019–2026Google Scholar
  25. 25.
    Keresztury G, Chalmers JM, Griffith PR (2002) Raman spectroscopy: theory. Hand book of vibrational spectroscopy. Wiley, New YorkGoogle Scholar
  26. 26.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4032CrossRefGoogle Scholar
  27. 27.
    Vijayachamundeeswari SP, Yagna Narayana B, Jone Pradeepa S, Sundaraganesan N (2015) Vibrational analysis, NBO analysis, NMR, UV-VIS, hyperpolarizability analysis of Trimethadione by density functional theory. J Mol Struct 1099:633–643CrossRefGoogle Scholar
  28. 28.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  29. 29.
    Natarajan S, Shanmugam G, Dhas SAMB (2008) Growth and characterization of a new semi organic NLO material: L-tyrosine hydrochloride. Cryst Res Technol 43:561–564CrossRefGoogle Scholar
  30. 30.
    Avci D (2011) Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: semiempirical analysis. Spectrochim Acta A Mol Biomol Spectrosc 82:37–43CrossRefGoogle Scholar
  31. 31.
    Avci D, Basoglu A, Atalay Y (2010) Ab initio HF and DFT calculations on an organic non-linear optical material. Struct Chem 21:213–219CrossRefGoogle Scholar
  32. 32.
    Altürk S, Avcı D, Tamer Ö, Atalay Y (2017) Comparison of different hybrid DFT methods on structural, spectroscopic, electronic and NLO parameters for a potential NLO material. Comput Theor Chem 1100:34–45CrossRefGoogle Scholar
  33. 33.
    Colherinhas G, Fileti EE, Malaspina T (2018). J Mol Model 24:181.  https://doi.org/10.1007/s00894-018-3719-3 CrossRefPubMedGoogle Scholar
  34. 34.
    Iozzi MF, Mennucci B, Tomasi J, Cammi R (2004) Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). J Chem Phys 120:7029–7040.  https://doi.org/10.1063/1.1669389 CrossRefPubMedGoogle Scholar
  35. 35.
    Guelai A, Brahim H, Guendouzi A et al (2018) Structure, electronic properties , and NBO and TD-DFT analyses of nickel (II), zinc (II), and palladium (II) complexes based on Schiff-base ligands. J Mol Model 24:301.  https://doi.org/10.1007/s00894-018-3839-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Marques MAL, Gross EKU (2003) Time-dependent density functional theory. In: Fiolhais C, Nogueira F, Marques MAL (eds) A primer in density functional theory. Lecture notes in physics, vol 620. Springer, BerlinGoogle Scholar
  37. 37.
    Pauzat F, Talbi D, Miller M, Defrees D, Ellinger Y (1992) Theoretical IR spectra of ionized naphthalene. J Phys Chem 96:7882–7886CrossRefGoogle Scholar
  38. 38.
    Lide Jr DR, Mann DE (1958) Microwave spectra of molecules exhibiting internal rotation. IV. Isobutane, tertiary butyl fluoride, and trimethylphospine. J Chem Phys 29:914.  https://doi.org/10.1063/1.1744611 CrossRefGoogle Scholar
  39. 39.
    Pitzer KS, Kilpatrick JE (1946) The entropies and related properties of branched paraffin hydrocarbons. Chem Rev 393:435–447.  https://doi.org/10.1021/cr60124a005 CrossRefGoogle Scholar
  40. 40.
    Jha O, Yadav TK, Yadav RA (2017) Comparative structural and vibrational study of the four lowest energy conformers of serotonin. Spectrochim Acta A Mol Biomol Spectrosc 173:307–317CrossRefGoogle Scholar
  41. 41.
    Shankar Rao YB, Prasad MVS, Udaya Sri N, Veeraiah V (2016) Vibrational (FT-IR, FT-Raman) and UV-visible spectroscopic studies, HOMO-LUMO, NBO, NLO and MEP analysis of benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculaions. J Mol Struct 1108:567–582CrossRefGoogle Scholar
  42. 42.
    Sasikala V, Sajan D, Chaitanya K, Sundius T, Devi TU (2017) Qualitative and quantitative approach towards the molecular understanding of structural, vibrational and optical features of urea ninhydrin monohydrate. Mater Chem Phys 191:20–34CrossRefGoogle Scholar
  43. 43.
    Sun YX et al (2009) Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine. J Mol Struct THEOCHEM 904:74–82CrossRefGoogle Scholar
  44. 44.
    National Institute of Advanced Industrial Science and Technology (AIST) (1999) https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_disp.cgi?sdbsno=2353&spectrum_type=CNMR&fname=CDS00677. Accessed 16 April 2019
  45. 45.
    National Institute of Advanced Industrial Science and Technology (AIST) (1999) https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_disp.cgi?sdbsno=2353&spectrum_type=HNMR&fname=HSP03717. Accessed 16 April 2019
  46. 46.
    Condon E (1947) The Franck-Condon principle and related topics. Am J Phys 15:365–374.  https://doi.org/10.1119/1.1990977 CrossRefGoogle Scholar
  47. 47.
    Aboulmouhajir A, Mouatarif S et al (2017) Theoretical and spectroscopic investigations of conformations, rotational barriers and scaled vibrations of 2 , 3-dimethyl hexane. Mediterr J Chem 6:60–70CrossRefGoogle Scholar
  48. 48.
    Mirkin NG, Krimm S (2000) Ab initio analysis of the vibrational spectra of conformers of some branched alkanes. J Mol Struct 550–551:67–91CrossRefGoogle Scholar
  49. 49.
    Gough KM, Lupinetti C, Dawes R (2004) Computation and interpretation of Raman scattering intensities. J Comput Methods Sci Eng 4:597–609Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mouhi Eddine Hachim
    • 1
  • Karima Sadik
    • 1
  • Said Byadi
    • 1
  • Christian Van Alsenoy
    • 2
  • Aziz Aboulmouhajir
    • 1
    • 3
    Email author
  1. 1.Team of Molecular Modelling and Spectroscopy, Faculty of SciencesUniversity of Chouaib DoukkaliEl JadidaMorocco
  2. 2.Structural Chemistry Group, Department of ChemistryUniversity of AntwerpAntwerpBelgium
  3. 3.Organic Synthesis, Extraction and Valorization Laboratory, Team of Extraction, Spectroscopy and Valorization, Sciences Faculty of Ain ChockUniversity of Hassan IICasablancaMorocco

Personalised recommendations