Advertisement

Molecular adsorption and dissociation of CO2 on TiO2 anatase (001) activated by oxygen vacancies

  • L. A. Alcalá Varilla
  • N. Seriani
  • J. A. MontoyaEmail author
Original Paper
  • 69 Downloads
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Abstract

A study on the influence of oxygen vacancies on the anatase (001) surface on the CO2 adsorption process is presented. For its realization, density functional theory (DFT) was used under the Perdew–Burke–Ernzerhof (PBE) generalized gradient and the spin-polarized approximations. Hubbard-U corrections and van der Waals interactions were also included. Three different types of oxygen vacancies were investigated at different sites on the anatase (001) surface; the formation energies in each case were 67.05, 113.84, and 93.16 kcal/mol, respectively. We identified a type of oxygen vacancy that could favor both the CO2 adsorption and dissociation. The differences on CO2 adsorption properties are due to electronic and structural causes, such as midgap states (Ti3+ polarons species) and changes in the structural properties on the TiO2 surface, generated upon the introduction of an oxygen vacancy. It is concluded that oxygen vacancies can play an important role in both CO2 adsorption and dissociation.

Keywords

CO2 TiO2 Dissociation Vacancies Adsorption 

Notes

Acknowledgements

N.S. and J.A.M. want to thank the ICTP for providing access to its computational resources. N.S. also wants to thank ICETEX for their support through the “Profesores Invitados” program. L.A.A.V. acknowledges the receipt of a fellowship from the ICTP-TRIL Programme, Trieste, Italy. Finally, J.A.M. and L.A.A.V. also want to thank the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas, for financial support through contract 299-2016, as well as the Vicerrectoría de Investigaciones of the Universidad de Cartagena for its support through research grants.

References

  1. 1.
    Albo A, Luis P, Irabin A (2010) Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3- methylimidazolium ethylsulfate. Ind Eng Chem 49:11045–11051CrossRefGoogle Scholar
  2. 2.
    Mandal B, Guha M, Biswas A, Bandyopadhyay S (2001) Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem Eng Sci 56:6217–6224CrossRefGoogle Scholar
  3. 3.
    Hagewiesche D, Ashour S, Al-Ghawas H, Sandall O (1995) Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem Eng Sci 50:1071–1079CrossRefGoogle Scholar
  4. 4.
    Rochelle G (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654CrossRefGoogle Scholar
  5. 5.
    Belmabkhout Y, Serna R, Sayari A (2010) Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind sEng Chem 49:359–365Google Scholar
  6. 6.
    Bezerra D, Silva F, Moura P, Sousa A, Vieira R, Rodriguez E, Azevedo D (2014) CO2 adsorption in amine-grafted zeolite 13x. Appl Surf Sci 314:314–321CrossRefGoogle Scholar
  7. 7.
    Chaikittisilp W, Khunsupat R, Chen T, Jones C (2011) Poly(Allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind Eng Chem 50:14203–14210CrossRefGoogle Scholar
  8. 8.
    Azzouz A, Platon N, Nousir S, Ghomari K, Nistor D, Shiao T, Roy R (2013) Oh-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep Purif Technol 108:181–188CrossRefGoogle Scholar
  9. 9.
    Wang X, Min M, Liu Z, Yang Y, Zhou Z, Zhu M, Chen Y, Hsiao B (2011) Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. J Membr Sci 379:191–199CrossRefGoogle Scholar
  10. 10.
    Cheng Y, Chih H, Chung T (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745– 769CrossRefGoogle Scholar
  11. 11.
    Jingyun Y, Changjun L, Qingfeng G (2012) DFT study of CO2 adsorption and hydrogenation on the In2 O 3 surface. J Phys Chem C 116:7817–7825CrossRefGoogle Scholar
  12. 12.
    Steven T, Qiang Z, Jacob R, Simuck Y, Xiaowa N, Nancy S, Aravind A, Jay G (2019) STM and DFT studies of CO2 adsorption on O-Cu(100) surface. Surf Sci 679:50–55CrossRefGoogle Scholar
  13. 13.
    Bicheng Z, Liuyang Z, Difa X, Bei C, Jiaguo Y (2017) Adsorption investigation of CO2 on g-C3 N 4 surface by DFT calculation. Journal of CO2 Utilization 21:327–335CrossRefGoogle Scholar
  14. 14.
    Wang J, Li S, Zhao Z, Zhou D, LU A, ZHANG W (2016) Density functional theory study of CO2 adsorption in amine-functionalized carbonaceous materials. Acta Phys Chim Sin 32(7):1666–1673Google Scholar
  15. 15.
    Fazio G, Ferrighi L, Di Valentin C (2015) Nanoparticles: a model study of structural and electronic properties. J. Phys. Chem. C 119(35):20735–20746CrossRefGoogle Scholar
  16. 16.
    Mohamad M, Haq B, Ahmed R, Shaari A, Ali N, Hussain R (2015) A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Mater Sci Semicond Process 31:405–414CrossRefGoogle Scholar
  17. 17.
    Araujo E, Alcala L, Seriani N, Montoya J (2016) TiO2 anatase’s bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions. Surf Sci 653:187–196CrossRefGoogle Scholar
  18. 18.
    Diebold U (2003) The surf Sci of titanium dioxide. Surf Sci Rep 48:53229CrossRefGoogle Scholar
  19. 19.
    Liu L, Zhao H, Andino J, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828CrossRefGoogle Scholar
  20. 20.
    Mino L, Spoto G, Ferrari A (2014) CO2 capture by TiO2 anatase surfaces: a combined DFT and FTIR study. J Phys Chem C 118:25016–25026CrossRefGoogle Scholar
  21. 21.
    He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S (2014) Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed 001 facets. Energy Fuel 28:3982–3993CrossRefGoogle Scholar
  22. 22.
    Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:2126CrossRefGoogle Scholar
  23. 23.
    Hadjiivanov K, Klissurski D (1996) Surface chemistry of titania (anatase) and titania-supported catalysts. Chem Soc Rev 25:6169CrossRefGoogle Scholar
  24. 24.
    Rodriguez J, Liu P, Stacchiola D, Senanayake S, White M, Chen J (2015) Hydrogenation of CO2 to methanol: importance of metal-oxide and metal-carbide interfaces in the activation of CO2. ACS Catal 5:6696–6706CrossRefGoogle Scholar
  25. 25.
    Uma T, Joshua D, William P, Meijun L, Miaofang C, Zachary D, Krista S, David S, Sheng D, Zili W (2017) Effect of surface structure of TiO2 nanoparticles on CO2 adsorption and SO2 resistance. ACS Sustainable Chem Eng 5:9295–9306CrossRefGoogle Scholar
  26. 26.
    Waranyu P, Raina W, Vithaya R (2011) Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Appl Surf Sci 257:10322–10328CrossRefGoogle Scholar
  27. 27.
    Venkata P, James D, Harold H (2011) Photoinduced activation of CO2 on TiO2 surfaces: quantum chemical modeling of CO2 adsorption on oxygen vacancies. Fuel Process Technol 92:805–811CrossRefGoogle Scholar
  28. 28.
    Huygh S, Bogaerts A, Neyts Erik C (2016) How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). J Phys Chem C 120:21659–21669CrossRefGoogle Scholar
  29. 29.
    Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed (001) and (101) facets. J Am Chem Soc 136:8839–8842CrossRefGoogle Scholar
  30. 30.
    Sorescu D, Al-Saidi W, Jordan K (2011) CO2 adsorption on TiO2 (101) anatase: A dispersion-corrected density functional theory study. J Chem Phys 135:124701CrossRefGoogle Scholar
  31. 31.
    Sorescu D, Lee J, Al-Saidi W, Jordan K (2011) CO2 adsorption on TiO2 (110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments. J Chem Phys 134:104707CrossRefGoogle Scholar
  32. 32.
    Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y (2016) Engineering Coexposed (001) and (101) facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal 6:1097–1108CrossRefGoogle Scholar
  33. 33.
    Ramesha G, Brennecke J, Kamat P (2014) Origin of catalytic effect in the reduction of CO2 at nanostructured TiO2 films. ACS Catal 4:3249–3254CrossRefGoogle Scholar
  34. 34.
    Scandolo S, Giannozzi P, Cavazzoni C, Gironcoli S, Pasquarello A, Baroni S (2005) First-principles codes for computational crystallography in the quantum-ESPRESSO package. Z Kristallogr 220:574–579Google Scholar
  35. 35.
    Giannozzi P, al et (2009) QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condensed Matter 21(39):395502CrossRefGoogle Scholar
  36. 36.
    Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  37. 37.
    Anisimov V, Korotin M, Mylnikova A, Kozhevnikov A, Korotin D, Lorenzana J (2004) Computation of stripes in cuprates within the LDA+u method. Phys Rev B 70:172501CrossRefGoogle Scholar
  38. 38.
    Seriani N, Pinilla C, Crespo Y (2015) Presence of gap states at Cu/TiO2 anatase surfaces: consequences for the photocatalytic activity. J Phys Chem C 119(12):6696–6702CrossRefGoogle Scholar
  39. 39.
    Morgan B, Watson G (2007) A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci 601(21):5034–5041CrossRefGoogle Scholar
  40. 40.
    Kowalski P, Camellone M, Nair N, Meyer B, Marx D (2010) Charge localization dynamics induced by oxygen vacancies on the TiO2 (110) surface. Phys Rev Lett 105:146405CrossRefGoogle Scholar
  41. 41.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–99CrossRefGoogle Scholar
  42. 42.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892CrossRefGoogle Scholar
  43. 43.
    Makov G, Payne M (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51:4014CrossRefGoogle Scholar
  44. 44.
    Huygh S, Neyts E (2015) Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies. J Phys Chem C 119:4908–4921CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Doctorado en Ciencias FísicasUniversidad de CartagenaCartagenaColombia
  2. 2.Departamento de Física y ElectrónicaUniversidad de CórdobaMonteríaColombia
  3. 3.Condensed Matter and Statistical Physics SectionThe Abdus Salam ICTPTriesteItaly
  4. 4.Grupo de Modelado ComputacionalUniversidad de CartagenaCartagenaColombia

Personalised recommendations