Quantum mechanistic study of furan and 2-methylfuran hydrodeoxygenation on molybdenum and tungsten sulfide clusters

  • Wilfried G. KanhounnonEmail author
  • Urbain A. Kuevi
  • Gaston A. Kpotin
  • Simplice Koudjina
  • Alice Kpota Houngue
  • Guy Y. S. Atohoun
  • Jean-Baptiste Mensah
  • Michael BadawiEmail author
Original Paper


One of the possibilities of limiting carbon dioxide emissions is to use pyrolysis oils from biomass. However, their very high oxygen content confers to these oils a chemical instability and a high viscosity. Among the oxygen-containing compounds present in bio-oils, furanic compounds derived from the decomposition of cellulosic and hemi-cellulosic biomass are the most refractory to deoxygenation. The major products of their hydrodeoxygenation are alkanes and secondly alkenes, but the intermediates are still subject to controversy. In this work, we performed a DFT simulation of the hydrodeoxygenation of furan (C4H4O) and 2-methylfuran in the presence of molybdenum and tungsten sulphide Mo(W)S2. The aim of this work is to elucidate the reaction intermediates and to compare the activities of the two catalytic sites used in our reaction conditions. Our calculations show that the partial hydrogenation of the two molecules occurs preferentially in position (2,5). The hydrogenolysis reactions of the C-O bonds occur in two steps. The molybdenum sulphide exhibits higher catalytic activity.


Catalysis Biomass Furanic compounds MoS2 WS2 Hydrogenation Hydrogenolysis DFT 



The authors want to thank the PMMS (Pôle Messin de Modélisation et de Simulation) for providing us HPC resources and Mr. Derrick TOSSOU for language assistance.


  1. 1.
    Elliot DC (2007) Historical developments in hydroprocessing Bio-oils. Energy Fuels 21:1792–1815CrossRefGoogle Scholar
  2. 2.
    Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A Gen 397:1–12CrossRefGoogle Scholar
  3. 3.
    Bu Q, Lei HW, Zacher AH, Wang L, Ren SJ, Liang J, Wei Y, Liu YP, Tang JM, Zhang Q, Ruan R (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477CrossRefGoogle Scholar
  4. 4.
    Prins R (2008) In: G. Ertl (ed) Hydrotreating. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 6:2695–2718Google Scholar
  5. 5.
    Kreuzer K, Kramer R (1997) Support effects in the hydrogenation of tetrahydrofurane on platinum catalysts. J Catal 167:391–399CrossRefGoogle Scholar
  6. 6.
    Furimsky E (1983) Deactivation of molybdate catalyst during hydrodeoxygenation of tetrahydrofuran. Ind Eng Chem Prod Res Dev 22:34–38CrossRefGoogle Scholar
  7. 7.
    Bartok M, Szollosi G, Apjok J (1998) Mechanism of hydrogenolysis and isomerization of oxacycloalkanes, XVI transformation of tetrahydrofuran on platinum. React Kinet Catal Lett 64:21–28CrossRefGoogle Scholar
  8. 8.
    Yang J, Massoth FE (1987) Poisoning of 2-methylthiophene and p-methylfuran hydrogenolysis by piperidine and 2,6-lutidine. Appl Catal 34:215–224CrossRefGoogle Scholar
  9. 9.
    Romero Y, Richard F, Renème Y, Brunet S (2009) Hydrodeoxygenation of Benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst. Appl Catal A Gen 353:46–53CrossRefGoogle Scholar
  10. 10.
    Badawi M, Cristol S, Paul J-F, Payen E (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions. Comptes Rendus Chimie 12 (6-7):754–761CrossRefGoogle Scholar
  11. 11.
    Kpotin GA, Atohoun YGS, Kuevi UA, Kpota AH, Mensah JB (2012) Theoretical investigation of the hydrodesulphurization of tetrahydrothiopyrane over molybdenum disulfide catalyst. Eur J Sci Res 68:306–320Google Scholar
  12. 12.
    Kanhounnon GW, Atohoun GYS, Kuevi UA, Houngue AK, Kpotin GA, Mensah JB (2015) DFT study of deoxygenation of cycloaddition products of furan and 2-methylfuran with ethylene in the presence of aluminium chloride. J Comput Methods Mol Des 5:39–46Google Scholar
  13. 13.
    Atohoun YGS, Kuevi UA, Kpotin G, Kpota AH, Mensah JB (2011) Theoretical study of the hydrogenation of cyclopentene without catalyst and in the presence of molybdenum disulfide. Res J Chem Sci 1:18–23Google Scholar
  14. 14.
    Badawi M, Paul J-F, Payen E, Romero Y, Richard F, Brunet S, Popov A, Kondratieva E, Gilson JP, Mariey L, Travert A, Maugé F (2013) Hydrodeoxygenation of phenolic compounds by sulfided (Co)Mo/Al2O3 catalysts, a combined experimental and theoretical study. Oil & Gas Science and Technology-RevIFP Energies Nouvelles 68:829–840Google Scholar
  15. 15.
    Badawi M, Paul J-F, Cristol S, Payen E (2011) Guaiacol derivatives and inhibiting species adsorption over MoS2 and CoMoS catalysts under HDO conditions: A DFT study. Catalysis Communications 12 (10):901–905CrossRefGoogle Scholar
  16. 16.
    Badawi M, Paul JF, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil JM, El Fallah J, Gilson JP, Mariey L, Travert A, Maugé F (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study. Journal of Catalysis 282 (1):155–164CrossRefGoogle Scholar
  17. 17.
    Joffre J, Geneste P, Lerner AD (1986) A quantum-chemical study of site modeling for the adsorption and desulfurization of thiophene. J Catal 97:543–548CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li H, Izmaylov A, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  19. 19.
    Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  20. 20.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  21. 21.
    Semmeq A, Ouaskit S, Monari A, Badawi M (2019) Ionization and fragmentation of uracil upon microhydration. Physical Chemistry Chemical Physics 21 (9):4810–4821CrossRefGoogle Scholar
  22. 22.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  23. 23.
    Peng C, Schlegel HB (1994) Combining synchronous transit and quasy-Newton methods to find transition states. Israel J Chem 33:449–454CrossRefGoogle Scholar
  24. 24.
    Peng C, Ayala PY, Schelgel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–58CrossRefGoogle Scholar
  25. 25.
    Xerri B, Canneaux S, Louis F, Trincal J, Cousin F, Badawi M, Cantrel L (2012) Ab initio calculations and iodine kinetic modeling in the reactor coolant system of a pressurized water reactor in case of severe nuclear accident. Computational and Theoretical Chemistry 990:194–208CrossRefGoogle Scholar
  26. 26.
    Fukui K (1891) The path of chemical reactions - the IRC approach. Acc Chem Res 14:63–368Google Scholar
  27. 27.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  28. 28.
    De Paula A (2008) Chimie physique 8è éd de boeck Bruxelles 917Google Scholar
  29. 29.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  30. 30.
    Krebs E, Daudin A, Raybaud P (2009) A DFT study of CoMoS and NiMoS catalysts: from Nano-crystallite morphology to selective hydrodesulfurization. Oil Gas Sci Technol 64:707–718CrossRefGoogle Scholar
  31. 31.
    Dideberg O, Dupont L, Andre JM (1972) The crystal structure of dibenzofuran. Acta Cryst Sect 28:1002–1007CrossRefGoogle Scholar
  32. 32.
    De Paula A (2008) Chimie physique, 8è éd., De Boeck, Bruxelles, 366Google Scholar
  33. 33.
    Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2007) Corrigendum to the hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study. J Catal 248:188–203CrossRefGoogle Scholar
  34. 34.
    Hinnemann B, Moses PG, Nørskov JK (2008) Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism. J Phys Condens Matter 20:064236–064243CrossRefGoogle Scholar
  35. 35.
    Anderson AB, Al-Saigh ZY, Hall WK (1988) Hydrogen on MoS2. Theory of its heterolytic and homolytic chemisorption. J Phys Chem 92:803–809CrossRefGoogle Scholar
  36. 36.
    Sun M, Nelson AE, Adjaye J (2005) Adsorption and dissociation of H2 and H2S on MoS2 and NiMoS catalysts. Catal Today 105:36–43CrossRefGoogle Scholar
  37. 37.
    Blanchin S, Galtier P, Kasztelan S, Kressmann S, Penet H, Pérot G (2001) Kinetic modeling of the effect of H2S and of NH3 on toluene hydrogenation in the presence of a NiMo/Al2O3 hydrotreating catalyst. Discrimination between homolytic and heterolytic models. J Phys Chem A 105:10860–10866CrossRefGoogle Scholar
  38. 38.
    Daudin A, Brunet S, Pérot G, Raybaud P, Bouchy C (2007) Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts. J Catal 248:111–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO)Université d’Abomey-CalaviCotonouBénin
  2. 2.Laboratoire Physique et Chimie Théoriques UMR 7019 CNRS- Université de LorraineNancyFrance

Personalised recommendations