Advertisement

A systematic study of the surface structures and energetics of CH3NO2 surfaces by first-principles calculations

  • Mi ZhongEmail author
  • Han Qin
  • Qi-Jun LiuEmail author
  • Cheng-Lu Jiang
  • Feng Zhao
  • Hai-Lin Shang
  • Fu-Sheng Liu
  • Bin Tang
Original Paper
  • 21 Downloads

Abstract

Density functional theory (DFT) has been employed within the generalized gradient approximation and Perdew–Burke–Ernzerhof functional (GGA-PBE) to study the structural and electronic properties of nitromethane (NM) surface models. Different surfaces, including (100), (001), (101), (110), and (111), are considered in this work. The corresponding properties of bulk crystal for NM were also calculated to form a contrast to the slab models. Results with anisotropic characteristics of different surfaces have been observed in this study. There was an obviously great anisotropy in electronic parameters, especially the band gaps of different surfaces, indicating the anisotropic impact sensitivity along different directions of NM. The band gap value for (111) surface, 2.687 eV, was smaller than that of other surfaces, showing a higher impact sensitivity for NM. The estimated anisotropy has been revealed in surface energies for different surfaces.

Graphical Abstract

The valence band minimum (VBM) and conduction band maximum (CBM) of the nitromethane (100), (001), (101), (110) and (111) surface models

Keywords

First-principles calculations Nitromethane Impact sensitivity Anisotropy 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574254 and 11272296), the Fundamental Research Funds for the Central Universities (Grant Nos. 2018GF08 and 2682019LK07), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant No. D-CX201735), and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University.

References

  1. 1.
    Trevino SF, Prince E, Hubbard CR (1980) Refinement of the structure of solid nitromethane. J Chem Phys 73:2996CrossRefGoogle Scholar
  2. 2.
    Xiao HM, Wang ZY, Yao JM (1985) Quantum chemical study on sensitivity and stability of aromatic nitro explosives. Acta Chim Sin 43:14–18Google Scholar
  3. 3.
    Fan JF, Xiao HM (1996) Theoretical study on pyrolysis and sensitivity of energetic compounds.(2) nitro derivatives of benzene. J Mol Struct (THEOCHEM) 365:225–229CrossRefGoogle Scholar
  4. 4.
    Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982CrossRefGoogle Scholar
  5. 5.
    Zhu WH, Xiao HM (2010) First-principles band gap criterion for impact sensitivity of energetic crystals: a review. Struct Chem 21:657–665CrossRefGoogle Scholar
  6. 6.
    Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25–35CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech. 41:414–425CrossRefGoogle Scholar
  8. 8.
    Pospíšil M, Vávra P, Concha MC (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574CrossRefGoogle Scholar
  9. 9.
    Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223CrossRefGoogle Scholar
  10. 10.
    Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8CrossRefGoogle Scholar
  11. 11.
    Peter JSMPL (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol. Phys. 93:187–194CrossRefGoogle Scholar
  12. 12.
    Klapötke TM (2007) High energy density materials. Springer, Berlin, p 125Google Scholar
  13. 13.
    Tian B, Xiong Y, Chen L (2018) Relationship between the crystal packing and impact sensitivity of energetic materials. CrystEngComm 20:837–848CrossRefGoogle Scholar
  14. 14.
    Zhang C, Wang X, Huang H (2008) π-Stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 130:8359–8365CrossRefGoogle Scholar
  15. 15.
    Ma Y, Zhang A, Xue X (2014) Crystal packing of impact-sensitive high-energy explosives. Cryst Growth Des 14:6101–6114CrossRefGoogle Scholar
  16. 16.
    Stepanov V, Anglade V, Balas Hummers WA (2011) Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions. Propellants Explos Pyrotech 6:240–246CrossRefGoogle Scholar
  17. 17.
    Dick JJ (1984) Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive. Appl Phys Lett 44:859–861CrossRefGoogle Scholar
  18. 18.
    Dick JJ, Hooks DE, Menikoff R, Martinez AR (2004) Elastic–plastic wave profiles in cyclotetramethylene tetranitramine crystals. J Appl Phys 96:374–379CrossRefGoogle Scholar
  19. 19.
    Dick JJ, Mulford RN, Spencer WJ, Pettit DR, Garcia E, Shaw DC (1991) Shock response of pentaerythritol tetranitrate single crystals. J Appl Phys 70:3572–3587CrossRefGoogle Scholar
  20. 20.
    An Q, Liu Y, Zybin SV, Kim H, Goddard III WA (2012) Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. J Phys Chem C 116:10198–10206CrossRefGoogle Scholar
  21. 21.
    Zybin SV, Goddard III WA, Xu P, van Duin ACT, Thompson AP (2010) Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations. Appl Phys Lett 96:081918CrossRefGoogle Scholar
  22. 22.
    Zhou TT, Zybin SV, Liu Y, Huang FL, Goddard III WA (2012) Anisotropic shock sensitivity for β-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine energetic material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations. J Appl Phys 111:124904CrossRefGoogle Scholar
  23. 23.
    Zhou TT, Lou JF, Song HJ, Huang FL (2015) Anisotropic shock sensitivity in a single crystal δ-cyclotetramethylene tetranitramine: a reactive molecular dynamics study. Phys Chem Chem Phys 17:7924–7935CrossRefGoogle Scholar
  24. 24.
    Ge NN, Wei YK, Song ZF, Chen XR, Ji GF, Zhao F, Wei DQ (2014) Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique. J Phys Chem B 118:8691–8699CrossRefGoogle Scholar
  25. 25.
    Conroy MW, Oleynik II, Zybin SV, White CT (2008) First-principles anisotropic constitutive relationships in β-cyclotetramethylene tetranitramine (β-HMX). J Appl Phys 104:053506CrossRefGoogle Scholar
  26. 26.
    Conroy M, Oleynik II, Zybin SV, White CT (2007) Anisotropic constitutive relationships in energetic materials: PETN and HMX. AIP Conf Proc 955:361Google Scholar
  27. 27.
    Oleynik II, Conroy M, White CT (2007) Anisotropic constitutive relationships in energetic materials: nitromethane and RDX. AIP Conf Proc. 955:401Google Scholar
  28. 28.
    Zhong M, Qin H, Liu QJ, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017) Influences of different surfaces on anisotropic impact sensitivity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. Vacuum 139:117–121CrossRefGoogle Scholar
  29. 29.
    Bellitto VJ, Melnik MI (2010) Surface defects and their role in the shock sensitivity of cyclotrimethylene-trinitramine. Appl Surf Sci 256:3478–3481CrossRefGoogle Scholar
  30. 30.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  31. 31.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  32. 32.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570Google Scholar
  33. 33.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  34. 34.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787CrossRefGoogle Scholar
  35. 35.
    Fischer TH, Almlöf J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  36. 36.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  37. 37.
    Yarger FL, Olinger B (1986) Compression of solid nitromethane to 15 GPa at 298 K. J Chem Phys 85:1534–1538CrossRefGoogle Scholar
  38. 38.
    Zhong M, Liu QJ, Qin H, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017) Influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. Eur Phys J B 90:115CrossRefGoogle Scholar
  39. 39.
    Guo F, Cheng XL, Zhang H (2012) Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition. J Phys Chem A 116:3514–3520CrossRefGoogle Scholar
  40. 40.
    Liu H, Zhao JJ, Wei DQ, Gong ZZ (2006) Structural and vibrational properties of solid nitromethane under high pressure by density functional theory. J Chem Phys 124:124501CrossRefGoogle Scholar
  41. 41.
    Sorescu DC, Rice BM, Thompson DL (2000) Theoretical studies of solid nitromethane. J Phys Chem B 104:8406–8419CrossRefGoogle Scholar
  42. 42.
    Xiao HM, Li YF (1995) Sci Chin B 25:23–28Google Scholar
  43. 43.
    Chen ZX, Xiao HM (2014) Propellants Explos Pyrotech 39:487–495CrossRefGoogle Scholar
  44. 44.
    Sharia O, Kuklja MM (2012) Surface-enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylene-tetranitramine. J Phys Chem C 116:11077–11081CrossRefGoogle Scholar
  45. 45.
    Avouris P, Ozso F, Hamers RJ (1987) The reaction of Si (100) 2× 1 with NO and NH3: the role of surface dangling bonds. J Vac Sci Technol B Microelectron Process Phenom 5:1387–1392CrossRefGoogle Scholar
  46. 46.
    Yates Jr JT (1991) Surface chemistry of silicon-the behaviour of dangling bonds. J Phys Condens Matter 31:S143CrossRefGoogle Scholar
  47. 47.
    Zhu WH, Zhang X, Wei T, Xiao H (2009) First-principles study of crystalline mono-amino-2, 4, 6-trinitrobenzene, 1, 3-diamino-2, 4, 6-trinitrobenzene, and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene. J Mol Struct THEOCHEM 900(1–3):84–89CrossRefGoogle Scholar
  48. 48.
    Kamlet MJ, Adolph HG (1979) The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Propellants Explos Pyrotech 4(2):30–34CrossRefGoogle Scholar
  49. 49.
    Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. J Phys Chem B 111:12715–12722CrossRefGoogle Scholar
  50. 50.
    Xu XJ, Zhu WH, Xiao HM (2007) DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J Phys Chem B 111:2090–2097CrossRefGoogle Scholar
  51. 51.
    McCrone WC (1965) In: Fox D, Labes MM, Wessberger A (eds) Physics and chemistry of the organic solid state, vol II. Wiley, New York, p 726Google Scholar
  52. 52.
    Ou YX, Wang C, Pan ZL, Chen BR (1999) Sensitivity of hexanitrohexaazaisowurtzitane. Chin J Energ Mater 7:100–102Google Scholar
  53. 53.
    Sharia O, Kuklja MM (2012) Rapid materials degradation induced by surfaces and voids: ab initio modeling of β-octatetramethylene tetranitramine. J Am Chem Soc 134:11815–11820CrossRefGoogle Scholar
  54. 54.
    Sharia O, Tsyshevsky R, Kuklja MM (2013) Surface-accelerated decomposition of δ-HMX. J Phys Chem lett 4:730–734CrossRefGoogle Scholar
  55. 55.
    Tian XX, Wang T, Fan LF, Wang YK, Lu HG, Mu YW (2018) A DFT based method for calculating the surface energies of asymmetric MoP facets. Appl Surf Sci 427:357–362CrossRefGoogle Scholar
  56. 56.
    Liu P, Han XL, Sun DL, Wang Q (2018) First-principles investigation on the structures, energies, electronic and defective properties of Ti2AlN surfaces. Appl Surf Sci 433:1056–1066CrossRefGoogle Scholar
  57. 57.
    Zhang MH, Wang WY, Chen YF (2018) Insight of DFT and ab initio atomistic thermodynamics on the surface stability and morphology of In2O3. Appl Surf Sci 434:1344–1352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mi Zhong
    • 1
    • 2
    Email author
  • Han Qin
    • 1
    • 2
  • Qi-Jun Liu
    • 1
    • 2
    Email author
  • Cheng-Lu Jiang
    • 1
    • 2
  • Feng Zhao
    • 3
  • Hai-Lin Shang
    • 3
  • Fu-Sheng Liu
    • 1
    • 2
  • Bin Tang
    • 4
  1. 1.School of Physical Science and Technology, Southwest Jiaotong UniversityKey Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaChengdu 610031People’s Republic of China
  2. 2.Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  4. 4.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations