Advertisement

The Feynman dispersion correction for MNDO extended to F, Cl, Br and I

  • Maximilian Kriebel
  • Andreas Heßelmann
  • Matthias Hennemann
  • Timothy ClarkEmail author
Original Paper
  • 130 Downloads
Part of the following topical collections:
  1. Festschrift in Honor of Nohad Gresh

Abstract

The recently introduced “Feynman” dispersion correction for MNDO (MNDO-F) has been extended to include the elements fluorine, chlorine, bromine and iodine and the original parameterization for hydrogen, carbon, nitrogen and oxygen improved by allowing individual damping radii for the elements. MNDO-F gives a root-mean-square deviation to reference interaction energies of 0.35 kcal mol−1 for the complete parameterization dataset of H, C, N, O, F, Cl, Br and I containing compounds.

Graphical Abstract

The electrostatic potential at the 0.001 a.u. isodensity surface of the π-complex between benzene and 1,3,5-triodobenzene calculated at the MNDO-F optimized geometry.

Keywords

MNDO-F Halogens Feynman dispersion Semiempirical MO-theory 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Projektnummer 182849149 – SFB 953 “Synthetic Carbon Allotropes” and the Priority Program 1928 “Coordination Networks: Building Blocks for Functional Systems” (Cl85/24-1), and by the Bayerische Staatsministerium für Wissenschaft und Kunst as part of the “Solar Technologies Go Hybrid” initiative.

Supplementary material

894_2019_4038_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2414 kb)

References

  1. 1.
    Pople JA, Beveridge DL, Dobosh PA (1967) Approximate self-consistent molecular-orbital theory. V. Intermediate neglect of differential overlap. J Chem Phys 47:2026–2033.  https://doi.org/10.1063/1.1712233 CrossRefGoogle Scholar
  2. 2.
    Pople JA, Santry DP, Segal GA (1965) Approximate self-consistent molecular orbital theory. I. Invariant procedures. J Chem Phys 43:S129–S135.  https://doi.org/10.1063/1.1701475 CrossRefGoogle Scholar
  3. 3.
    Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907.  https://doi.org/10.1021/ja00457a004 CrossRefGoogle Scholar
  4. 4.
    Kriebel M, Weber K, Clark T (2018) A Feynman dispersion correction: a proof of principle for MNDO. J Mol Model 24:338.  https://doi.org/10.1007/s00894-018-3874-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Koller J, Harb V, Hodošček M, Hadži D (1985) MNDO and MNDO/H calculations on hydrogen bonds—a comparison with ab initio and CNDO/2 methods. J Mol Struct THEOCHEM 122:343–350.  https://doi.org/10.1016/0166-1280(85)80096-8 CrossRefGoogle Scholar
  6. 6.
    Thomas HB, Hennemann M, Kibies P, Hoffgaard F, Güssregen S, Hessler G, Kast SM, Clark T (2017) The hpCADD NDDO-Hamiltonian: parameterization. J Chem Inf Model 57:1907–1922.  https://doi.org/10.1021/acs.jcim.7b00080 CrossRefPubMedGoogle Scholar
  7. 7.
    Hennemann M, Clark T (2014) EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations. J Mol Model 20:2331.  https://doi.org/10.1007/s00894-014-2331-4
  8. 8.
    Margraf JT, Hennemann M, Meyer B, Clark T (2015) EMPIRE: a highly parallel semiempirical molecular orbital program: 2: periodic boundary conditions. J Mol Model 21:144.  https://doi.org/10.1007/s00894-015-2692-3
  9. 9.
    Cepos InSilico GmbH (2018) EMPIRE software. Cepos InSilico GmbH, Erlangen. http://www.ceposinsilico.de/products/empire.htm. Accessed 3 December 2018
  10. 10.
    Baker J (1986) An algorithm for the location of transition states. J Comput Chem 7:385–395.  https://doi.org/10.1002/jcc.540070402 CrossRefGoogle Scholar
  11. 11.
    Řezáč J, Riley KE, Hobza P (2012) Benchmark calculations of noncovalent interactions of halogenated molecules. J Chem Theory Comput 8:4285–4292.  https://doi.org/10.1021/ct300647k CrossRefPubMedGoogle Scholar
  12. 12.
    Miriyala VM, Řezáč J (2018) Testing semiempirical QM methods on a data set of interaction energies mapping repulsive contacts in organic molecules. J Phys Chem A 122:2801–2808.  https://doi.org/10.1021/acs.jpca.8b00260 CrossRefPubMedGoogle Scholar
  13. 13.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision A.03. Gaussian Inc, Wallingford CT http://gaussian.com/gaussian16/ Accessed 3 December 2018
  14. 14.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289.  https://doi.org/10.1016/0009-2614(90)80030-H CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Direct MP2 gradient method. Chem Phys Lett 166:275–280.  https://doi.org/10.1016/0009-2614(90)80029-D CrossRefGoogle Scholar
  16. 16.
    Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  17. 17.
    Woon DE, Dunning Jr TH (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371.  https://doi.org/10.1063/1.464303 CrossRefGoogle Scholar
  18. 18.
    Kendall RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806.  https://doi.org/10.1063/1.462569 CrossRefGoogle Scholar
  19. 19.
    Scuseria GE, Janssen CL, Schaefer III HF (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89:7382–7387.  https://doi.org/10.1063/1.455269 CrossRefGoogle Scholar
  20. 20.
    Bartlett RJ, Purvis III GD (1978) Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int J Quantum Chem 14:561–581.  https://doi.org/10.1002/qua.560140504 CrossRefGoogle Scholar
  21. 21.
    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975.  https://doi.org/10.1063/1.453520 CrossRefGoogle Scholar
  22. 22.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate Total energies. Some procedures with reduced errors. Mol Phys 19:553–566.  https://doi.org/10.1080/00268977000101561 CrossRefGoogle Scholar
  23. 23.
    Hesselmann A, Jansen G (2003) The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Phys Chem Chem Phys 5:5010–5014.  https://doi.org/10.1039/B310529F CrossRefGoogle Scholar
  24. 24.
    Hesselmann A, Jansen G, Schutz M (2005) Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. J Chem Phys 122:014103.  https://doi.org/10.1063/1.1824898 CrossRefGoogle Scholar
  25. 25.
    Misquitta AJ, Szalewicz K (2002) Intermolecular forces from asymptotically corrected density functional description of monomers. Chem Phys Lett 357:301–306.  https://doi.org/10.1016/S0009-2614(02)00533-X CrossRefGoogle Scholar
  26. 26.
    Podeszwa R, Bukowski R, Szalewicz K (2006) Density-fitting method in symmetry-adapted perturbation theory based on Kohn-sham description of monomers. J Chem Theory Comput 2:400–412.  https://doi.org/10.1021/ct050304h CrossRefPubMedGoogle Scholar
  27. 27.
    Jansen G (2014) Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. Wiley Interdiscip Rev Comput Mol Sci 4:127–144.  https://doi.org/10.1002/wcms.1164 CrossRefGoogle Scholar
  28. 28.
    Hesselmann A, Korona T (2014) Intermolecular symmetry-adapted perturbation theory study of large organic complexes. J Chem Phys 141:094107.  https://doi.org/10.1063/1.4893990 CrossRefPubMedGoogle Scholar
  29. 29.
    Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci 2:242–253.  https://doi.org/10.1002/wcms.82 Google Scholar
  30. 30.
    Heßelmann A (2018) DFT-SAPT intermolecular interaction energies employing exact-exchange Kohn-sham response methods. J Chem Theory Comput 14:1943–1959.  https://doi.org/10.1021/acs.jctc.7b01233 CrossRefPubMedGoogle Scholar
  31. 31.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set) interaction energies of small model complexes. Phys Chem Chem Phys 8:1985–1993.  https://doi.org/10.1039/B600027D CrossRefPubMedGoogle Scholar
  32. 32.
    Rezac J, Riley KE, Hobza P (2011) A well-balanced database of Benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438.  https://doi.org/10.1021/ct2002946 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    BEGDB – Benchmark Energy and Geometry Database, http://www.begdb.com/ Accessed 5 December 2018
  34. 34.
    Dewar MJS, Reynolds CH (1986) An improved set of MNDO parameters for sulfur. J Comput Chem 7:140–143.  https://doi.org/10.1002/jcc.540070206 CrossRefPubMedGoogle Scholar
  35. 35.
    Dewar MJS, Rzepa HS (1978) Ground states of molecules. 40. MNDO results for molecules containing fluorine. J Am Chem Soc 100:58–67.  https://doi.org/10.1021/ja00469a010 CrossRefGoogle Scholar
  36. 36.
    Dewar MJS, Rzepa HS (1983) Ground states of molecules. 53. MNDO calculations for molecules containing chlorine. J Comput Chem 4:158–169.  https://doi.org/10.1002/jcc.540040207 CrossRefGoogle Scholar
  37. 37.
    Dewar MJS, Healy EF (1983) Ground states of molecules. 64. MNDO calculations for compounds containing bromine. J Comput Chem 4:542–551.  https://doi.org/10.1002/jcc.540040412 CrossRefGoogle Scholar
  38. 38.
    Dewar MJS, Healy EF, Stewart JJP (1984) Ground states of molecules. 67. MNDO calculations for compounds containing iodine. J Comput Chem 5:358–362.  https://doi.org/10.1002/jcc.540050413 CrossRefGoogle Scholar
  39. 39.
    Schwertfeger P, Nagle JK (2018) 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol Phys (Epub ahead of print 24 October 2018).  https://doi.org/10.1080/00268976.2018.1535143 CrossRefGoogle Scholar
  40. 40.
    London F (1938) The general theory of molecular forces. Trans Faraday Soc 33:8–26.  https://doi.org/10.1039/TF937330008B CrossRefGoogle Scholar
  41. 41.
    Fricke B (1986) On the correlation between electric polarizabilities and the ionization potential of atoms. J Chem Phys 84:862–866.  https://doi.org/10.1063/1.450530 CrossRefGoogle Scholar
  42. 42.
    Kolář MH, Deepa P, Ajani H, Pecina A, Hobza P (2015) Characteristics of a σ-hole and the nature of a halogen bond. Top Curr Chem 359:1–26.  https://doi.org/10.1007/128_2014_606 CrossRefPubMedGoogle Scholar
  43. 43.
    Riley KE, Hobza P (2013) The relative roles of electrostatics and dispersion in the stabilization of halogen bonds. Phys Chem Chem Phys 15:17742–17751.  https://doi.org/10.1039/c3cp52768a CrossRefPubMedGoogle Scholar
  44. 44.
    Clark T (2017) Halogen bonds and σ-holes. Faraday Disc 203:9–27.  https://doi.org/10.1039/C7FD00058H CrossRefGoogle Scholar
  45. 45.
    Dral PO, Wu X, Thiel W (2019) Semiempirical quantum-chemical methods with Orthogonalization and dispersion corrections. J Chem Theor Comput 15:1743–1760.  https://doi.org/10.1021/acs.jctc.8b01265 CrossRefGoogle Scholar
  46. 46.
    Esterhuysen C, Heßelmann A, Clark T (2017) Trifluoromethyl: an amphiphilic noncovalent bonding partner. ChemPhysChem 18:772–784.  https://doi.org/10.1002/cphc.201700027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer-Chemistry Center, Department of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  2. 2.Chair of Theoretical Chemistry, Department of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations