Advertisement

Adsorption of light mercaptans over metal (Co, Cu, Fe, Ni) doped hexagonal boron nitride nanosheets: a first-principles study

  • Zahra Moghadaszadeh
  • Mohammad Reza ToosiEmail author
  • Mohammad Reza ZardoostEmail author
Original Paper
  • 56 Downloads

Abstract

Light mercaptans (R–SH, R = C1–C4) as volatile malodorous and toxic compounds were theoretically adsorbed on metal (Co, Cu, Fe, Ni) doped hexagonal boron nitride (h-BN) nanosheets to obtain the adsorption energies of the mercaptans and electronic structures of the sheets before and after adsorption using the density functional theory method. The results indicate that doping B/N vacancy h-BN sheets with the metals decreased Eg compared to the pristine h-BN. Adsorption energies showed strong chemisorption of light mercaptans over metal doped h-BN. It is found that by increasing the alkyl chain in mercaptan the adsorption energy increases. Charge analysis and study of the correlation between variation of charge in the sulfur atom and the adsorption energy of mercaptan are presented.

Keywords

Adsorption Light mercaptans Hexagonal boron nitride 2D materials 

Notes

Acknowledgments

This research was financially supported by Qaemshahr Branch of Islamic Azed University (IAU).

References

  1. 1.
    Rafson HR (1998) Odor and VOC control handbook. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Kastner JR, Das KC (2002) Wet scrubber analysis of volatile organic compounds removal in the rendering industry. J Air Waste Manage Assoc 52:459CrossRefGoogle Scholar
  3. 3.
    Iliev V (1993) Catalytic oxidation of mercaptans by charcoal-supported sterically hindered cobalt (II)-phthalocyanines. J Mol Catal 85:l269CrossRefGoogle Scholar
  4. 4.
    Toosi MR, Peyravi MH, Sajadi J, Bayani MJ, Manghabati H (2013) Photocatalytic purification of wastewater polluted by odorant sulfur compounds using titanium oxide in a continuous photoreactor. Int J Chem React Eng 11:1Google Scholar
  5. 5.
    Tamai H, Nagoya H, Shiono T (2006) Adsorption of methyl mercaptan on surface modified activated carbon. J Colloid Interface Sci 300:814CrossRefGoogle Scholar
  6. 6.
    Mirzaeian M, Rashidi AM, Zare M, Ghabezi R, Lotfi R (2014) Mercaptan removal from natural gas using carbon nanotube supported cobalt phthalocyanine nanocatalyst. J Nat Gas Sci Eng 18:439CrossRefGoogle Scholar
  7. 7.
    Fan D, Zhang C, He J, Hua R, Zhanga Y, Yang Y (2012) Redox chemistry between graphene oxide and mercaptan. J Mater Chem 22:18564CrossRefGoogle Scholar
  8. 8.
    Weber G, Benoit F, Bellat J-P, Paulin C, Mougin P, Thomas M (2008) Selective adsorption of ethyl mercaptan on NaX zeolite. Microporous Mesoporous Mater 109:184CrossRefGoogle Scholar
  9. 9.
    Choi K, Lee YT, Im S (2016) Two-dimensional van der Waals nanosheet devices for future electronics and photonics. Nano Today 11:626CrossRefGoogle Scholar
  10. 10.
    Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209CrossRefGoogle Scholar
  11. 11.
    Gautam C, Tiwary CS, Machado LD, Jose S, Ozden S, Biradar S, Galvao DS, Sonker RK, Yadav BC, Vajtai R, Ajayan PM (2016) Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RCS Adv 6:87888Google Scholar
  12. 12.
    Lin L, Liu T, Zhang Y, Wang Z (2016) Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance. Ceram Int 42:971CrossRefGoogle Scholar
  13. 13.
    Liu G, Rumyantsev SL, Jiang C, Shur MS, Balandin AA (2015) Gas sensing with h-BN capped MoS2 heterostructure thin film transistors. IEEE Electron Device Lett 36:1202CrossRefGoogle Scholar
  14. 14.
    Liu X, Duan T, Menga C, Hanb Y (2015) Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: a first-principles investigation. RSC Adv 5:10452CrossRefGoogle Scholar
  15. 15.
    Wang X, Yan Z, Zhou H, Zhang X, Wu H (2018) O2 activation and CO oxidation on n-p codoped h-BN single-atom catalysts. Comput Theor Chem 1127:31CrossRefGoogle Scholar
  16. 16.
    Sagynbaeva M, Hussain T, Panigrahi P, Johansson B, Ahuja R (2015) Complementing the adsorption energies of CO2, H2S and NO2 to h-BN sheets by doping with carbon. Europhys Lett 109:57008CrossRefGoogle Scholar
  17. 17.
    Zhou X, Chu W, Zhou Y, Sun W, Xue Y (2018) DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets. Appl Surf Sci 439:2463Google Scholar
  18. 18.
    Heidari H, Afshari S, Habibi E (2015) Sensing properties of pristine, Al-doped, and defected boron nitride nanosheet toward mercaptans: a first-principles study. RSC Adv 5:94201CrossRefGoogle Scholar
  19. 19.
    Hernández JMG, Cocoletzi GH, Anota EC (2012) DFT studies of the phenol adsorption on boron nitride sheets. J Mol Model 18:137CrossRefGoogle Scholar
  20. 20.
    Noei M, Ahmadaghaei N, Salari AA (2017) Ethyl benzene detection by BN nanotube: DFT studies. J Saudi Chem Soc 21:S12CrossRefGoogle Scholar
  21. 21.
    Anota EC, Tlapale Y, Villanueva MS, Márquez JAR (2015) Non-covalent functionalization of hexagonal boron nitride nanosheets with guanine. J Mol Model 21:215CrossRefGoogle Scholar
  22. 22.
    Tonigold KF, Grob A (2015) A systematic DFT study of substrate reconstruction effects due to thiolate and selenolate adsorption. Surf Sci 640:18CrossRefGoogle Scholar
  23. 23.
    Peng C, Zhong Y, Min F (2018) Adsorption of alkylamine cations on montmorillonite (001) surface: a density functional theory study. Appl Clay Sci 152:249CrossRefGoogle Scholar
  24. 24.
    Meshkat SS, Tavakoli O, Rashidi A, Esrafili MD (2018) Adsorptive mercaptan removal of liquid phase using nanoporous graphene: equilibrium, kinetic study and DFT calculations. Ecotoxicol Environ Saf 165:533CrossRefGoogle Scholar
  25. 25.
    Martínez-Magadán JM, Roa RO, García P, Martínez-Palou R (2012) DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline. Fuel Process Technol 97:24CrossRefGoogle Scholar
  26. 26.
    Li H, Liu Y, Yang Y, Yang D, Sun J (2014) Influences of hydrogen bonding dynamics on adsorption of ethyl ethylmercaptan onto functionalized activated carbons: a DFT/TDDFT study. J Photochem Photobio A 291:9CrossRefGoogle Scholar
  27. 27.
    Soscun H, Castellano O, Hernandez J, Arrieta F, Bermudez Y, Hinchliffe A, Brussin MR, Sanchez M, Sierraalta A, Ruette F (2007) An ab initio and DFT study of the interaction between ethanethiol and zeolites. J Mol Catal A 278:165CrossRefGoogle Scholar
  28. 28.
    Meshkat SS, Rashidi A, Tavakoli O (2018) Removal of mercaptan from natural gas condensate using N-doped carbon nanotube adsorbents: kinetic and DFT study. J Nat Gas Sci Eng 55:288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Qaemshahr branchIslamic Azad UniversityQaemshahrIran

Personalised recommendations