Advertisement

Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO2 on this adsorption: a theoretical investigation

  • Zhengyang GaoEmail author
  • Xiaoshuo LiuEmail author
  • Ang Li
  • Chuanzhi Ma
  • Xiang Li
  • Xunlei DingEmail author
  • Weijie Yang
Original Paper
  • 63 Downloads

Abstract

The release of mercury (Hg) species from coal-fired power plants has attracted increasing concern, and the development of an efficient and economical method to control Hg species emission from such plants is urgently required. Activated carbon is a compelling sorbent for the elimination of mercury species from flue gas, but the adsorption mechanism of mercuric oxide clusters on carbonaceous materials is still unclear. Therefore, the adsorption characteristics of mercuric oxide clusters on activated carbon were investigated systematically utilizing density functional theory in this work. It was found that mercuric oxide clusters are chemically adsorbed on activated carbon, and that the pre-adsorption of SO2 on the activated carbon leads to complicated mercuric oxide cluster adsorption behavior due to an irregular distribution of the electrostatic potential on the surface of the carbonaceous material. Thermodynamic analysis indicated that the adsorption energy of SO2 on activated carbon is lower than that of mercuric oxide clusters in the temperature range 298.15–1000 K. Competitive adsorption analysis suggested that mercuric oxide clusters are at least 108.11 times more likely than SO2 to be adsorbed on activated carbon.

Graphical abstract

Competitive adsorption between SO2 and HgO clusters on activated carbon surface in flue gas of coal-fired power plants.

Keywords

Activated carbon Mercuric oxide clusters SO2 Electrostatic potential Competitive adsorption 

Notes

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (2182066), the Natural Science Foundation of Heibei Province (B2018502067), and the Fundamental Research Funds for the Central Universities (JB2015RCY03 and 2017XS121). The provision of access to TianHe-2 supercomputer computational resources of the Lvliang Supercomputer Center is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Mergler D, Anderson HA, Mahaffey KR, Murray M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11CrossRefGoogle Scholar
  2. 2.
    Scheuhammer AM, Meyer MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36(1):12–18CrossRefGoogle Scholar
  3. 3.
    Liu J, Qu W, Sang WJ, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184(2):163–167CrossRefGoogle Scholar
  4. 4.
    Tan Y, Mortazavi R, Dureau B, Douglas MA (2004) An investigation of mercury distribution and speciation during coal combustion. Fuel 83(16):2229–2236CrossRefGoogle Scholar
  5. 5.
    He C, Shen B, Chen J, Cai J (2014) Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ Sci Technol 48(14):7891–7898CrossRefGoogle Scholar
  6. 6.
    He P, Zhang X, Peng X, Jiang X, Wu J, Chen N (2015) Interaction of elemental mercury with defective carbonaceous cluster. J Hazard Mater 300:289–297CrossRefGoogle Scholar
  7. 7.
    Liu J, Cheney MA, Wu F, Li M (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186(1):108–113CrossRefGoogle Scholar
  8. 8.
    Liu J, Qu W, Yuan J, Wang S, Qiu J, Zheng CJE, et al. (2010) Theoretical studies of properties and reactions involving mercury species present in combustion flue gases. Energy Fuels 24(1):117–122CrossRefGoogle Scholar
  9. 9.
    Xiang F, Yong H, Kumar S, Wang Z, Liu L, Huang Z, et al. (2017) Influence of hydrothermal dewatering on trace element transfer in Yimin coal. Appl Therm Eng 117:675–681CrossRefGoogle Scholar
  10. 10.
    Xu P, Luo G, Zhang B, Zeng X, Xu Y, Zou R, et al. (2017) Influence of low pressure on mercury removal from coals via mild pyrolysis. Appl Therm Eng 113:1250–1255CrossRefGoogle Scholar
  11. 11.
    Gao Y, Zhang Z, Wu J, Duan L, Umar A, Sun L, et al. (2013) A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environ Sci Technol 47(19):10813–10823CrossRefGoogle Scholar
  12. 12.
    Chu P, Laudal D, Brickett L, Lee C. Power plant evaluation of the effect of SCR technology on mercury. Conference Power plant evaluation of the effect of SCR technology on mercury. p 19–22Google Scholar
  13. 13.
    Yang W, Gao Z, Ding X, Lv G, Yan W (2018) The adsorption characteristics of mercury species on single atom iron catalysts with different graphene-based substrates. Appl Surf Sci 455:940–951CrossRefGoogle Scholar
  14. 14.
    Feeley TJ, Brickett LA, O'Palko BA, Murphy JT (2010) Field testing of mercury control technologies for coal-fired power plants. National Energy Technology Laboratory (DOE), Washington, DCGoogle Scholar
  15. 15.
    Li H, Wu CY, Li Y, Zhang J (2012) Superior activity of MnOx–CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl Catal B Environ 111(3):381–388Google Scholar
  16. 16.
    Mei Z, Shen Z, Mei Z, Zhang Y, Xiang F, Chen J, et al. (2008) The effect of N-doping and halide-doping on the activity of CuCoO4 for the oxidation of elemental mercury. Appl Catal B Environ 78(1–2):112–119CrossRefGoogle Scholar
  17. 17.
    Li J, Yan N, Qu Z, Qiao S, Yang S, Guo Y, et al. (2009) Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environ Sci Technol 44(1):426–431Google Scholar
  18. 18.
    Xu J, Bao J, Tang J, Du M, Liu H, Xie G et al (2018) Characteristics and inhibition of Hg0 re-emission in a wet flue gas desulfurization system. Energy Fuel 32(5):6111–6118CrossRefGoogle Scholar
  19. 19.
    Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20(5):2828–2843CrossRefGoogle Scholar
  20. 20.
    Nguyen-Thanh D, Bandosz TJ (2005) Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 43(2):359–367CrossRefGoogle Scholar
  21. 21.
    López-Antón MA, Díaz-Somoano M, Fierro JLG, Martínez-Tarazona MR (2007) Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Process Technol 88(8):799–805CrossRefGoogle Scholar
  22. 22.
    Laumb JD, Benson SA, Olson EA (2004) X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Process Technol 85(6):577–585CrossRefGoogle Scholar
  23. 23.
    Norell M (2012) Control of mercury emissions from coal-fired electric utility boilers: interim report including errata dated 3-21-02. US EPA, Washington, DCGoogle Scholar
  24. 24.
    Yang H, Xu Z, Fan M, Bland AE, Judkins RR (2007) Adsorbents for capturing mercury in coal-fired boiler flue gas. J Hazard Mater 146(1):1–11CrossRefGoogle Scholar
  25. 25.
    Pedersen KH, Jensen AD, Dam-Johansen K (2010) The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete. Combust Flame 157(2):208–216CrossRefGoogle Scholar
  26. 26.
    Shen F, Liu J, Zhang Z, Dong Y, Gu C (2018) Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process Technol 171:258–264CrossRefGoogle Scholar
  27. 27.
    Gao Z, Li M, Sun Y, Yang W (2018) Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface. J Hazard Mater 360:436–444CrossRefGoogle Scholar
  28. 28.
    Zhang H, Liu J, Shen J, Jiang X (2015) Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion. Energy 82:312–321CrossRefGoogle Scholar
  29. 29.
    Rémy S, Prudent P, Hissler C, Probst JL, Krempp G (2003) Total mercury concentrations in an industrialized catchment, the Thur River basin (North-Eastern France): geochemical background level and contamination factors. Chemosphere 52(3):635–644CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, et al. (2009) Gaussian 09, revision D.01, vol 27. Gaussian Inc., Wallingford, p 34Google Scholar
  31. 31.
    Goerigk L, Grimme S (2010) Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7(2):291–309CrossRefGoogle Scholar
  32. 32.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78Google Scholar
  33. 33.
    Gao Z, Yang W, Ding X, Ding Y, Yan W (2017) Theoretical research on heterogeneous reduction of N2O by char. Appl Therm Eng 126:28–36CrossRefGoogle Scholar
  34. 34.
    Zhang H, Liu J, Wang X, Luo L, Jiang X (2017) DFT study on the C(N)-NO reaction with isolated and contiguous active sites. Fuel 203:715–724CrossRefGoogle Scholar
  35. 35.
    Liu J, Qu W, Yuan J, Wang S, Qiu J, Zheng C (2010) Theoretical studies of properties and reactions involving mercury species present in combustion flue gases. Energy Fuel 24(1):509–518CrossRefGoogle Scholar
  36. 36.
    Gao Z, Ding Y, Yang W, Han W (2017) DFT study of water adsorption on lignite molecule surface. J Mol Model 23(1):27CrossRefGoogle Scholar
  37. 37.
    Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct Chem 25(5):1521–1533CrossRefGoogle Scholar
  38. 38.
    Zhang X, Zhou Z, Zhou J, Liu J, Cen K (2012) Density functional study of NO desorption from oxidation of nitrogen containing char by O. Combust Sci Technol 184(4):445–455CrossRefGoogle Scholar
  39. 39.
    Gao Z, Yang W (2016) Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces. J Mol Model 22(7):166Google Scholar
  40. 40.
    Yang Y, Jing L, Zhang B, Feng L (2017) Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J Hazard Mater 321:154–161Google Scholar
  41. 41.
    Yang W, Gao Z, Liu X, Li X, Ding X, Yan WJCS, et al. (2018) Single-atom iron catalyst with single-vacancy graphene-based substrate as a novel catalyst for NO oxidation: a theoretical study. Catal Sci Technol 8(16):4159–4168CrossRefGoogle Scholar
  42. 42.
    Gao Z, Sun Y, Li M, Yang W, Ding X (2018) Adsorption sensitivity of Fe decorated different graphene supports toward toxic gas molecules (CO and NO). Appl Surf Sci 456:351–359CrossRefGoogle Scholar
  43. 43.
    Yang W, Gao Z, Liu X, Ding X, Yan W (2019) The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates. Chem Eng J 361:304–313Google Scholar
  44. 44.
    Espinal JF, Mondragón F, Truong TN (2009) Thermodynamic evaluation of steam gasification mechanisms of carbonaceous materials. Carbon 47(13):3010–3018CrossRefGoogle Scholar
  45. 45.
    Li J, Maroto-Valer MMJC (2012) Computational and experimental studies of mercury adsorption on unburned carbon present in fly ash. Carbon 50(5):1913–1924CrossRefGoogle Scholar
  46. 46.
    Shen F, Liu J, Dong Y, Wu DJCEJ (2018) Mercury removal by biomass-derived porous carbon: experimental and theoretical insights into the effect of H2S. Chem Eng J 348:409–415CrossRefGoogle Scholar
  47. 47.
    Perry S, Hambly E, Fletcher T, Solum M, Pugmire R (2000) Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proc Combust Inst 28(2):2313–2319CrossRefGoogle Scholar
  48. 48.
    Chen N, Yang RT (1998) Ab initio molecular orbital calculation on graphite: selection of molecular system and model chemistry. Carbon 36(7–8):1061–1070CrossRefGoogle Scholar
  49. 49.
    Montoya A, Truong TTT, Mondragón F, Truong TN (2001) CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. J Phys Chem A 105(27):6757–6764CrossRefGoogle Scholar
  50. 50.
    Rui W, Wei F, Dandan Z, Huiling L, Huanyu Z, Xuri H (2017) Geometric stability of PtFe/PdFe embedded in graphene and catalytic activity for CO oxidation. Appl Organomet Chem 31(11):e3808CrossRefGoogle Scholar
  51. 51.
    Olson E, Laumb J, Benson S, Dunham G, Sharma R, Mibeck B, et al. (2003) An improved model for flue gas-mercury interactions on activated carbons. In: Proceedings of 2003 Combined Power Plant Air Pollutant Control Mega Symposium. Energy & Environmental Research Center, Grand Forks, pp 19–22Google Scholar
  52. 52.
    Wang C, Xu S, Cui YP (2013) Optical and bonding characters of Hg type clusters. New J Chem 37(10):3303–3307CrossRefGoogle Scholar
  53. 53.
    Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon 47(12):2855–2864CrossRefGoogle Scholar
  54. 54.
    Yang FH, Yang RT (2002) Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes. Carbon 40(3):437–444CrossRefGoogle Scholar
  55. 55.
    Liu J, Qu W, Joo SW, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167CrossRefGoogle Scholar
  56. 56.
    Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J Mol Struct THEOCHEM 425(1–2):107–114CrossRefGoogle Scholar
  57. 57.
    Hohenstein EG, Sherrill CD (2009) Effects of heteroatoms on aromatic pi-pi interactions: benzene-pyridine and pyridine dimer. J Phys Chem A 113(5):878CrossRefGoogle Scholar
  58. 58.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  59. 59.
    Serre SD, Silcox GD (2000) Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind Eng Chem Res 39(6):1723–1730CrossRefGoogle Scholar
  60. 60.
    Park J-H, Ahn J-W, Kim K-H, Son Y-S (2019) Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas. Chem Eng J 355:351–366Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringNorth China Electric Power UniversityBaodingChina
  2. 2.School of Mathematics and PhysicsNorth China Electric Power UniversityBeijingChina

Personalised recommendations