Solid state NMR and computational studies on cyclopentadienyl lithium

  • Haijun Jiao
  • Walter BauerEmail author
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift


Lithiumcyclopentadienide, previously identified to be an endless polymer in the ligand-free solid state, was investigated by 13C- and 6Li-CP/MAS NMR spectra, and by B3LYP-GIAO theoretical calculations. By spectra simulation, the axially symmetric 13C-shift tensor components were identified to be δ11 = δ22 = 151.5 ppm, δ33 = 15.5 ppm. The 6Li-tensor components are δ11 = δ22 = +1.0 ppm, δ33 = −43.0 ppm. This extremely high field component is due to cumulative ring current effects. B3LYP-GIAO/TZVP calculations on the tensor principal components agree remarkably well with the measurements. A new and very simple method of preparing air-sensitive compounds for solid-state NMR analyses is described.

Graphical abstract

Shielding tensor main components from slow-speed solid state NMR spectra


Cyclopentadienyl Lithium Solid state NMR 13C 6Li Moment analysis Shift tensor B3LYP GIAO Sample preparation Air sensitive Herzfeld Berger 


Supplementary material

894_2019_4025_MOESM1_ESM.pdf (62 kb)
ESM 1 (PDF 61 kb)


  1. 1.
    Johnels D, Boman A, Edlund U (1998) 7Li solid-state NMR spectroscopic study of cyclopentadienyllithium complexes. Magn Reson Chem 36:S151CrossRefGoogle Scholar
  2. 2.
    Baumann W, Oprunenko Y, Günther H (1995) Dynamic behaviour of tetramethylethylene diamine (TMEDA) ligands in solid organolithium compounds: a variable temperature 13C and 15N CP/MAS NMR study. Z Naturforsch 50a:429Google Scholar
  3. 3.
    Blom R, Faegri Jr K, Midtgaard T (1991) Adduct influences on (cyclopentadienyl)lithium. J Am Chem Soc 113:3230CrossRefGoogle Scholar
  4. 4.
    Stalke D (1994) Das Lithocen-anion und “offenes” Calcocen—neue Anstöße in der Chemie der alkali- und Erdalkalimetallocene. Angew Chem 106:2256–2168CrossRefGoogle Scholar
  5. 5.
    Harder S, Prosenc MH (1994) Das Anion von Lithocen: der einfachste Hauptgruppenmetall-Sandwichkomplex. Angew Chem 106:1830CrossRefGoogle Scholar
  6. 6.
    Jutzi P, Leffers W, Hampel B, Pohl S, Saak W (1987) Zur Struktur eines kristallinen alkalimetallcyclopentadienids. Angew Chem 99:563–583CrossRefGoogle Scholar
  7. 7.
    Pietraß T, Burkert PK (1993) 7Li solid state NMR study of a TMEDA complex of trimethylsilylcyclopentadienyllithium. Z Naturforsch 48b:1555CrossRefGoogle Scholar
  8. 8.
    Johnels D, Andersson A, Boman A, Edlund U (1996) Structural studies of fluorenyllithium complexes using 7Li solid-state NMR spectroscopy. Magn Reson Chem 34:908CrossRefGoogle Scholar
  9. 9.
    Foy JT, Wilkes EB, Aprahamian I (2012) Self-assembly of benzyl cyclopentadienyl lithium. CrystEngComm 14:6126CrossRefGoogle Scholar
  10. 10.
    Michel R, Herbst-Irmer R, Stalke D (2011) Revealing coordination patterns in C5-cyclic lithium organics. Organometallics 30:4379CrossRefGoogle Scholar
  11. 11.
    Paquette LA, Bauer W, Sivik MR, Bühl M, Feigel M, Schleyer PvR (1990) Structure of isodicyclopentadienide and lithium cyclopentadienide in tetrahydrofuran solution. A combined NMR, IGLO, and MNDO study. J Am Chem Soc 112:8776Google Scholar
  12. 12.
    Dinnebier RE, Behrens U, Olbrich F (1997) Solid state structures of cyclopentadienyllithium, -sodium, and -potassium. Determination by high-resolution powder diffraction. Organometallics 16:3855CrossRefGoogle Scholar
  13. 13.
    Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300CrossRefGoogle Scholar
  14. 14.
    Wemmer DE, Pines A (1981) Carbon-13 chemical shifts in solid metal sandwich compounds. J Am Chem Soc 103:34CrossRefGoogle Scholar
  15. 15.
    Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021CrossRefGoogle Scholar
  16. 16.
    Facelli JC, Grant DM, Michl J (1987) Carbon-13 shielding tensors: experimental and theoretical determination. Acc Chem Res 20:152CrossRefGoogle Scholar
  17. 17.
    Bauer W (1995) NMR of organolithium compounds: general aspects and application of two-dimensional Heteronuclear Overhauser Effect Spectroscopy (HOESY). In: Sapse AM, Schleyer PvR (eds) Lithium chemistry: a theoretical and experimental overview. Wiley, New York, pp 125–172Google Scholar
  18. 18.
    Wehrli FW (1978) Natural-abundance lithium-6 NMR spin-lattice relaxation in some simple organolithium compounds. Magn Reson Chem 11:106Google Scholar
  19. 19.
    Espidel JE, Harris RK, Wade K (1994) Lithium-7 and Lithium-6 studies of solid complexes of lithium tetrahydroborate. Magn Reson Chem 31:166CrossRefGoogle Scholar
  20. 20.
    Harris RK, Minoja AP (1995) Use of cross-polarization in Lithium-6 solid state NMR. Magn Reson Chem 33:152CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ (2016) Gaussian, Inc., Wallingford CTGoogle Scholar
  22. 22.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627CrossRefGoogle Scholar
  23. 23.
    Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  24. 24.
    Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for NMR chemical shifts. Mol Phys 27:789–807CrossRefGoogle Scholar
  25. 25.
    Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  26. 26.
    Seebach D, Hässig R, Gabriel J (1983) 13C-NMR-Spektroskopie von Organolithiumverbindungen bei tiefen Temperaturen. Strukturinformation aus der 13C, 6Li-Kopplung. Helv Chim Acta 66:308CrossRefGoogle Scholar
  27. 27.
    Wilmad Co., accessed 27 January 2019
  28. 28.
    Aime S, Gobetto R (1993) Solid state 13C NMR spectra of metal carbonyl clusters. J Clust Sci 4:1CrossRefGoogle Scholar
  29. 29.
    Lang A (1993) Festkörper-13C-NMR-spektroskopische Untersuchungen lithiumorganischer Verbindungen—Möglichkeiten und Grenzen. PhD thesis, University of Giessen, GermanyGoogle Scholar
  30. 30.
    Eichele K (2019), accessed 27 January 2019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Leibniz Institute for Catalysis (LIKAT Rostock)RostockGermany
  2. 2.Institute of Organic Chemistry II, Department Chemistry and PharmacyUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations