Advertisement

Dynamics and spectroscopy of van der Waals complexes composed of ammonia and noble gases

  • Camila D’Avila Braga Sette
  • Thiago Ferreira da Cunha
  • Alessandra Sofia KiametisEmail author
  • João Batista Lopes Martins
  • Ricardo Gargano
Original Paper
  • 32 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

In this work, we calculate the rovibrational energies and spectroscopic constants for the systems formed by ammonia (NH3) and noble gases (Ng=He, Ne, Ar, Kr and Xe). For the spectroscopic constant calculations, we used two different methods: Dunham and another one that use rovibrational energies (here calculated by discrete variable method). In both cases, we used the improved Lennard–Jones potential energy curves (PECs). These PECs, which describe very well van der Waals systems, were built using the dissociation and equilibrium distance obtained from experiments of crossed molecular beams. The spectroscopic constant results, obtained by both methods were in excellent agreement with each other for all NH3-Ng studied systems. Also in relation to NH3-He system, we realize that although this system has a relatively small dissociation energy, it has one vibrational level. Finally, the spectroscopic constants and fundamental rovibrational energy results were used to verify the stability of each system through the lifetime decomposition.

Keywords

Ammonia and noble gases Potential energy surfaces Spectroscopy constants Rovibrational energies Lifetime decomposition 

Notes

References

  1. 1.
    Nelson DD Jr, Fraser GT, Peterson KI, Zhao K, Klemperer W (1986) . J Chem Phys 85:5512CrossRefGoogle Scholar
  2. 2.
    van Wijngaarden J, Jäger W (2001) . J Chem Phys 115:6504CrossRefGoogle Scholar
  3. 3.
    Cambi R, Cappelletti DJ, Liuti G, Pirani F (1991) . J Chem Phys 95:1852CrossRefGoogle Scholar
  4. 4.
    Luis JM, Reis H, Papadopoulos M, Kirtman B (2009) . J Chem Phys 131:034116CrossRefGoogle Scholar
  5. 5.
    Olthof EHT, van der Avoird A, Wormer PES, Loeser JG, Saykally RJ (1994) . J Chem Phys 101:8443CrossRefGoogle Scholar
  6. 6.
    Bulski M, Wormer PES, van der Avoird A (1991) . J Chem Phys 94:491CrossRefGoogle Scholar
  7. 7.
    Rijks W, Wormer PES (1989) . J Chem Phys 90:6507CrossRefGoogle Scholar
  8. 8.
    Walmsley CM, Ungerechts H (1983) . Astron Astrophys 122:164–170Google Scholar
  9. 9.
    Huang X, Schwenke DW, Lee TJ (2011) . J Chem Phys 134:044320CrossRefGoogle Scholar
  10. 10.
    van Bladel JWI, van der Avoird A, Wormer PES (1991) . J Chem Phys 94:501CrossRefGoogle Scholar
  11. 11.
    Schmuttenmaer CA, Cohen RC, Saykally RJ (1994) . J Chem Phys 101:146CrossRefGoogle Scholar
  12. 12.
    Meyer H (1994) . J Chem Phys 101:6686CrossRefGoogle Scholar
  13. 13.
    Grushow A, Burns WA, Reeve SW, Dvorak MA, Leopold KR (1994) . J Chem Phys 100:2413CrossRefGoogle Scholar
  14. 14.
    Tao F, Klemperer W (1994) . J Chem Phys 101:1129CrossRefGoogle Scholar
  15. 15.
    Pirani F, Roncaratti LF, Belpassi L, Tarantelli F, Cappelletti D (2011) . J Chem Phys 135:194301CrossRefGoogle Scholar
  16. 16.
    Roncaratti LF (2009) Quantum effects in molecular beam scattering experiments: characterization of the interaction in weakly bound complexes. Thesis, University of PerugiaGoogle Scholar
  17. 17.
    Jones JE (1924) . Proc Roy Soc A 106:463CrossRefGoogle Scholar
  18. 18.
    Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Phys Chem Chem Phys 10:5477– 5640CrossRefGoogle Scholar
  19. 19.
    Light JC, Hamilton IP, Lill JV (1985) . J Chem Phys 82:1400CrossRefGoogle Scholar
  20. 20.
    Neto JJS, Costa LS (1998) . Braz J Phys 111:28Google Scholar
  21. 21.
    Cunha WF, Oliveira RM, Roncaratti LF, Martins JBL, Silva GM, Gargano R (2014) . J Mol Model 20:2498CrossRefGoogle Scholar
  22. 22.
    Dunham JL (1932) . Phys Rev 41:721–731CrossRefGoogle Scholar
  23. 23.
    Laidler KL (1969) Theories of chemical reaction rates. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Slater NB (1939) . Proc Cambridge Philos Soc 35:56CrossRefGoogle Scholar
  25. 25.
    Clark T, Murray JS, Politzer P (2018) . Phys Chem Chem Phys 20:30076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations