Functionalized graphene pieces to trap the insecticide imidacloprid: a theoretical analysis

  • Luz Palomino-Asencio
  • Alfredo Ramírez-Torres
  • Joana Avelar
  • Jorge Garza
  • Erwin García-HernándezEmail author
Original Paper


Eleven adducts for the interaction between imidacloprid (IMI) and some activated carbon (AC) pieces are proposed in this work. Activated carbon pieces were obtained by using a finite zig-zag graphene structure saturated with hydrogen atoms on the edges giving a pristine model with 70 carbon atoms and 22 hydrogen atoms. The zig-zag graphene structure was oxidized with -O, -COOH, -OH, and -O- groups. In this process, two identical groups were inserted over selected sites of the pristine model. All of these structures yielded ten IMI-AC adducts by using the PBE0-D3/6-31G* method, which predicts stable adducts at 0 K, and six of our models give negative free energies changes at room temperature. Thus, we expect that our IMI-AC models can be present when IMI interacts with an AC model. For one of the IMI-AC adducts, we applied solid-state techniques to avoid border effects, and we found that the imidacloprid is deprotonated giving reactive species, suggesting a new path to degrade this insecticide. Additionally, from this analysis, we proposed an additional IMI-AC adduct, which involves high free energy at room temperature. With this study, we show that our AC models can trap imidacloprid, which is quite convenient to remove this insecticide from our environment. Although it is well recognized that functionalized graphene structures are designed to trap some chemical compounds, to the best of our knowledge, this is the first time where IMI-graphene pieces interactions are studied in detail, and hydrogen bonds are analyzed through some scalar fields defined in quantum chemistry like the electron density and the non-covalent interactions index.


Imidacloprid Graphene Physisorption models DFT 



ART and EGH acknowledge the computing time granted by LANCAD and CONACYT. The authors appreciate the facilities provided by the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa. JG and JA thank CONACYT for the financial support given through the project FC-2016/2412 and the scholarship 306248, respectively.

Supplementary material

894_2019_4016_MOESM1_ESM.pdf (672 kb)
(PDF 672 KB)


  1. 1.
    Jeschke P, Nauen R (2008) Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci 64 (11):1084–1098CrossRefGoogle Scholar
  2. 2.
    Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB (2005) Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotechnol Biochem 69: 1442–1452CrossRefGoogle Scholar
  3. 3.
    Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268CrossRefGoogle Scholar
  4. 4.
    Ford KA, Casida JE (2006) Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem Res Toxicol 19(11):1549–1556CrossRefGoogle Scholar
  5. 5.
    Rodrigues KJA, Santana MB, Do Nascimento JLM, Picanco-Diniz DLW, Maues LAL, Santos SN, Ferreira VMM, Alfonso M, Duran R, Faro LRF (2010) Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotoxicol Environ Saf 73(1):101–107CrossRefGoogle Scholar
  6. 6.
    Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59(7):2897–2908CrossRefGoogle Scholar
  7. 7.
    Sheets LP, Li AA, Minnema GJ, Collier RH, Creek MR, Peffer RC (2016) A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit Rev Toxicol 46:153–190CrossRefGoogle Scholar
  8. 8.
    Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  9. 9.
    Armbrust KL, Peeler HB (2002) Effects of formulation on the run-off of imidacloprid from turf. Pest Manag Sci 58:702–706CrossRefGoogle Scholar
  10. 10.
    Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ, Morrissey CA (2014) Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS One 9:e92821CrossRefGoogle Scholar
  11. 11.
    Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Inter 74:291–303CrossRefGoogle Scholar
  12. 12.
    Haith DA (2010) Ecological risk assessment of pesticide runoff from grass surfaces. Environ Sci Technol 44:6496–6502CrossRefGoogle Scholar
  13. 13.
    Starner K, Goh K (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010-2011. Bull Environ Contam Toxicol 88:316–321CrossRefGoogle Scholar
  14. 14.
    Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP (2013) Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 8:e62374CrossRefGoogle Scholar
  15. 15.
    Lamers M, Anyusheva M, La N, Nguyen VV, Streck T (2011) Pesticide pollution in surface- and groundwater by paddy rice cultivation: a case study from northern Vietnam. Clean: Soil Air Water 39:356–361Google Scholar
  16. 16.
    Turabik M, Oturan N, Gözmen B, Oturan MA (2014) Efficient removal of insecticide “imidacloprid” from water by electrochemical advanced oxidation processes. Environ Sci Pollut Res 21:8387–8397CrossRefGoogle Scholar
  17. 17.
    Dell’Arciprete ML, Cobos CJ, Mártire DO, Furlong JP, Gonzalez MC (2011) Reaction kinetics and mechanisms of neonicotinoid pesticides with sulfate radicals. New J Chem 35:672–680CrossRefGoogle Scholar
  18. 18.
    Dell’Arciprete ML, Soler JM, Santos-Juanes L, Arques A, Mártire DO, Furlong JP, Gonzalez MC (2012) Reactivity of neonicotinoid insecticides with carbonate radicals. Water Res 46:3479–3489CrossRefGoogle Scholar
  19. 19.
    Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier, OxfordCrossRefGoogle Scholar
  20. 20.
    Harris PJF, Liu Z, Suenaga K (2008) Imaging the atomic structure of activated carbon. J Phys: Condens Matter 20:362201Google Scholar
  21. 21.
    Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317CrossRefGoogle Scholar
  22. 22.
    Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43:2419–2430CrossRefGoogle Scholar
  23. 23.
    Voorhees JP, Anderson BS, Phillips BM, Tjeerdema RS (2017) Carbon treatment as a method to remove imidacloprid from agriculture runoff. Bull Environ Contam Toxicol 99:200–202CrossRefGoogle Scholar
  24. 24.
    Daneshvar N, Aber S, Khani A, Khataee A R (2007) Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system. J Hazard Mater 144:47–51CrossRefGoogle Scholar
  25. 25.
    Hu J Y, Aizawa T, Ookubo Y, Morita T, Magara Y (1998) Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon. Water Res 32(9):2593–2600CrossRefGoogle Scholar
  26. 26.
    Urbain KY, Fodjo EK, Ardjouma D, Serge BY, Aimé ES, Bi G I M, Albert T (2017) Removal of imidacloprid using activated carbon produced from Ricinodendron heudelotii shells. Bull Chem Soc Ethiop 31 (3):397–409CrossRefGoogle Scholar
  27. 27.
    Zahoor M (2011) Effect of agitation speed on adsorption of imidacloprid on activated carbon. J Chem Soc Pak 33(3):305–312Google Scholar
  28. 28.
    Zahoor M, Mahramanlioglu M (2011) Adsorption of imidacloprid on powdered activated carbon and magnetic activated carbon. Chem Biochem Eng Q 25(1):55–63Google Scholar
  29. 29.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University, New YorkGoogle Scholar
  30. 30.
    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRefGoogle Scholar
  31. 31.
    Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897):1815–1817CrossRefGoogle Scholar
  32. 32.
    Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539CrossRefGoogle Scholar
  33. 33.
    Pandey D, Reifenberger R, Piner R (2008) Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602(9):1607–1613CrossRefGoogle Scholar
  34. 34.
    Stewart JJP (2012) MOPAC2012. Stewart Computational Chemistry, Colorado SpringsGoogle Scholar
  35. 35.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. 37.
    Tolmachev AM, Firsov DA, Kuznetsova TA, Anuchin KM (2009) DFT modeling of the adsorption of benzene, methanol, and ethanol molecules in activated carbon nanopores. Prot Met Phys Chem Surf 45(2):163–168CrossRefGoogle Scholar
  38. 38.
    Huber SE, Probst M (2014) Modeling the intrusion of molecules into graphite: origin and shape of the barriers. Int J Mass Spectrom 365–366:248–254CrossRefGoogle Scholar
  39. 39.
    Tolmachev AM, Anuchin KM, Fomenkov PE, Kryuchenkova NG, Firsov DA (2017) Modeling of methane adsorption on microporous active carbons and nanotubes using methods of molecular dynamics and quantum chemistry. Prot Met Phys Chem Surf 53(2):215–219CrossRefGoogle Scholar
  40. 40.
    Tolmachev AM, Khondar GO, Kucherov AV, Matveenko AS, Fomkin AA (2013) Molecular nanostructures of alcohols adsorbed in micropores of active carbons. Prot Met Phys Chem Surf 49(2):158–165CrossRefGoogle Scholar
  41. 41.
    Kim DY, Madridejos JML, Ha M, Kim JH, Yang DC, Baig C, Kim KS (2017) Size-dependent conformational change in halogen-π interaction: from benzene to graphene. Chem Commun 53:6140–6143CrossRefGoogle Scholar
  42. 42.
    Ma J, Michaelides A, Alfè D, Schimka L, Kresse G, Wang E (2011) Adsorption and diffusion of water on graphene from first principles. Phys Rev B 84:033402CrossRefGoogle Scholar
  43. 43.
    García-Hernández E, Flores-Moreno R, Vázquez–Mayagoitia A, Vargas R, Garza J (2017) Initial stage of the degradation of three common neonicotinoids: theoretical prediction of charge transfer sites. New J Chem 41(3):965–974CrossRefGoogle Scholar
  44. 44.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32:1456–1465CrossRefGoogle Scholar
  45. 45.
    García JJ, Hernández-Esparza R, Vargas R, Tiznado W, Garza J (2019) Formation of small clusters of NaCl dihydrate in the gas phase. New J Chem 43:4342–4348CrossRefGoogle Scholar
  46. 46.
    Cortés-Arriagada D, Sanhueza L, Santander-Nelli M (2013) Modeling the physisorption of bisphenol A on graphene and graphene oxide. J Mol Model 19:3569–3580CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  48. 48.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489CrossRefGoogle Scholar
  49. 49.
    Bader RFW (1994) Principle of stationary action and the definition of a proper open system. Phys Rev B 49:13348–13356CrossRefGoogle Scholar
  50. 50.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  51. 51.
    Hernández-Esparza R, Mejia-Chica S M, Zapata-Escobar AD, Guevara-García A, Martínez-Melchor A, Hernández-Pérez JM, Vargas R, Garza J (2014) Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units. J Comput Chem 35:2272–2278CrossRefGoogle Scholar
  52. 52.
    Hernández-Esparza R, Vázquez-Mayagoitia A, Soriano-Agueda L-A, Vargas R, Garza J (2018) GPUs as boosters to analyze scalar and vector fields in quantum chemistry. Int J Quantum Chem. CrossRefGoogle Scholar
  53. 53.
    Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  54. 54.
    Navarrete-López AM, Garza J, Vargas R (2007) Relationship between the critical points found by the electron localization function and atoms in molecules approaches in adducts with hydrogen bonds. J Phys Chem A 111:11147–11152CrossRefGoogle Scholar
  55. 55.
    Vargas R, Garza J, Dixon DA, Hay BP (2000) How strong is the Cα-H...OC hydrogen bond? J Am Chem Soc 122:4750–4755CrossRefGoogle Scholar
  56. 56.
    Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85:235149CrossRefGoogle Scholar
  57. 57.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71:035109CrossRefGoogle Scholar
  58. 58.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungber M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, JK Nørskov, Puska M, Rantala T, Schiøtz J, Thygesen K S, Jacobsen K W (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys: Condens Matter 22: 253202Google Scholar
  59. 59.
    Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  60. 60.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953CrossRefGoogle Scholar
  61. 61.
    Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull Mater Sci 22:33–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Posgrado e Investigación, División de MecatrónicaInstituto Tecnológico Superior de ZacapoaxtlaZacapoaxtlaMéxico
  2. 2.División de Ingeniería IndustrialInstituto Tecnológico Superior de ZacapoaxtlaZacapoaxtlaMéxico
  3. 3.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMéxico

Personalised recommendations