From GROMACS to LAMMPS: GRO2LAM
- 874 Downloads
- 1 Citations
Abstract
Atomistic simulations have progressively attracted attention in the study of physical-chemical properties of innovative nanomaterials. GROMACS and LAMMPS are currently the most widespread open-source software for molecular dynamics simulations thanks to their good flexibility, numerous functionalities and responsive community support. Nevertheless, the very different formats adopted for input and output files are limiting the possibility to transfer GROMACS simulations to LAMMPS. In this article, we present GRO2LAM, a modular and open-source Python 2.7 code for rapidly translating input files and parameters from GROMACS to LAMMPS format. The robustness of the tool has been assessed by comparing the simulation results obtained by GROMACS and LAMMPS, after the format conversion by GRO2LAM. Specifically, three nanoscale configurations of interest in both engineering and biomedical fields are studied, namely a carbon nanotube, an iron oxide nanoparticle, and a protein immersed in water. In perspective, GRO2LAM may be the first step to achieve a full interoperability between molecular dynamics software. This would allow to easily exploit their complementary potentialities and post-processing functionalities. Moreover, GRO2LAM could facilitate the cross-check of simulation results, guaranteeing the reproducibility of molecular dynamics models and testing their robustness.
GRO2LAM, a modular and open-source Python code for rapidly translating input files and parameters from GROMACS to LAMMPS format
Keywords
Reproducibility Molecular dynamics GROMACS LAMMPS ConversionNotes
Acknowledgments
The authors acknowledge the high-performance computing initiative at Politecnico di Torino (HPC@Polito) and the CINECA Iscra C projects MISURPAC (HP10CJOR5E) and NANOCLUS (HP10CYC6UC) for the availability of high-performance computing resources and support. The authors would also like to acknowledge Dr. Rajat Srivastava for his useful suggestions. The authors declare no competing financial interests.
References
- 1.Lin S, Shih CJ, Sresht V, Rajan AG, Strano MS, Blankschtein D (2017) Adv Colloid Interface Sci 244:36PubMedCrossRefGoogle Scholar
- 2.Rajan AG, Silmore KS, Swett J, Robertson AW, Warner JH, Blankschtein D, Strano MS (2019) Nat Mater 18:129CrossRefGoogle Scholar
- 3.Bigdeli MB, Fasano M (2017) Int J Therm Sci 117:98CrossRefGoogle Scholar
- 4.Fasano M, Borri D, Chiavazzo E, Asinari P (2016) Appl Therm Eng 101:762CrossRefGoogle Scholar
- 5.Bigdeli MB, Fasano M, Cardellini A, Chiavazzo E, Asinari P (2016) Renew Sustain Energy Rev 60:1615CrossRefGoogle Scholar
- 6.Fasano M, Humplik T, Bevilacqua A, Tsapatsis M, Chiavazzo E, Wang EN, Asinari P (2016) Nat Commun 7:12762PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Ahmadi M, Nowroozi A, Shahlaei M (2015) J Mol Graph Model 61:243PubMedCrossRefGoogle Scholar
- 8.Cardellini A, Fasano M, Chiavazzo E, Asinari P (2016) Phys Lett A 380(20):1735CrossRefGoogle Scholar
- 9.Gizzatov A, Key J, Aryal S, Ananta J, Cervadoro A, Palange AL, Fasano M, Stigliano C, Zhong M, Di Mascolo D et al (2014) Adv Funct Mater 24(29):4584PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Choubey SK, Jeyaraman J (2016) J Mol Graph Model 70:54PubMedCrossRefGoogle Scholar
- 11.Kamali R, Kharazmi A (2013) Comput Phys Commun 184(10):2316CrossRefGoogle Scholar
- 12.Cosden IA, Lukes JR (2013) Comput Phys Commun 184(8):1958CrossRefGoogle Scholar
- 13.Somogyi E, Mansour AA, Ortoleva PJ (2016) Comput Phys Commun 202:337CrossRefGoogle Scholar
- 14.Neumann P, Flohr H, Arora R, Jarmatz P, Tchipev N, Bungartz HJ (2016) Comput Phys Commun 200:324CrossRefGoogle Scholar
- 15.Mackay F, Ollila ST, Denniston C (2013) Comput Phys Commun 184(8):2021CrossRefGoogle Scholar
- 16.Bergamasco L, Izquierdo S, Ammar A (2013) J Non-Newtonian Fluid Mech 201:29CrossRefGoogle Scholar
- 17.Bergamasco L, Izquierdo S, Pagonabarraga I, Fueyo N (2015) Chem Eng Sci 126:471CrossRefGoogle Scholar
- 18.Cardellini A, Fasano M, Bigdeli MB, Chiavazzo E, Asinari P (2016) J Phys Condens Matter 28 (48):483003PubMedCrossRefGoogle Scholar
- 19.Tascini AS, Armstrong J, Chiavazzo E, Fasano M, Asinari P, Bresme F (2017) Phys Chem Chem Phys 19(4):3244PubMedCrossRefGoogle Scholar
- 20.Morciano M, Fasano M, Nold A, Braga C, Yatsyshin P, Sibley DN, Goddard BD, Chiavazzo E, Asinari P, Kalliadasis S (2017) J Chem Phys 146(24):244507PubMedCrossRefGoogle Scholar
- 21.Allen P, Tildesley D (1989) Computer simulation of liquids. Oxford Science Publications (Clarendon Press), OxfordGoogle Scholar
- 22.Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Academic Press, New YorkGoogle Scholar
- 23.Fasano M, Bigdeli MB, Sereshk MRV, Chiavazzo E, Asinari P (2015) Renew Sustain Energy Rev 41:1028CrossRefGoogle Scholar
- 24.Alder B, Wainwright T (1957) J Chem Phys 27(5):1208CrossRefGoogle Scholar
- 25.Rahman A (1964) Phys Rev 136(2A):A405CrossRefGoogle Scholar
- 26.Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33PubMedCrossRefGoogle Scholar
- 27.Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comb Chem 26(16):1781CrossRefGoogle Scholar
- 28.Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91(1–3):1CrossRefGoogle Scholar
- 29.Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) J Chem Theory Comput 4(3):435PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Plimpton S (1995) J Comput Phys 117(1):1CrossRefGoogle Scholar
- 31.Tersoff J (1989) Phys Rev B 39(8):5566CrossRefGoogle Scholar
- 32.Sun H (1998) J Phys Chem B 102(38):7338CrossRefGoogle Scholar
- 33.Vermaas JV, Hardy DJ, Stone JE, Tajkhorshid E, Kohlmeyer A (2016) J Chem Inf Model 56 (6):1112PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Rusu VH, Horta VA, Horta BA, Lins RD, Baron R (2014) J Mol Graph Model 48:80PubMedCrossRefGoogle Scholar
- 35.Smith W, Yong C, Rodger P (2002) Mol Simul 28(5):385CrossRefGoogle Scholar
- 36.Yong CW (2016) Descriptions and implementations of dl_f notation: a natural chemical expression system of atom types for molecular simulations. J Chem Inf Model 56(8):1405. https://doi.org/10.1021/acs.jcim.6b00323 PubMedCrossRefGoogle Scholar
- 37.Shirts MR, Klein C, Swails JM, Yin J, Gilson MK, Mobley DL, Case DA, Zhong ED (2017) J Comput Aided Mol Des 31(1): 147PubMedCrossRefGoogle Scholar
- 38.Buckingham RA (1938) Philos Trans R Soc A: Math Phys Eng Sci 168:264–283. The Royal SocietyGoogle Scholar
- 39.Berendsen H, Grigera J, Straatsma T (1987) J Phys Chem 91(24):6269CrossRefGoogle Scholar
- 40.Nosé S (1984) J Chem Phys 81(1):511CrossRefGoogle Scholar
- 41.Hoover WG (1985) Phys Rev A 31(3):1695CrossRefGoogle Scholar
- 42.Parrinello M, Rahman A (1981) J Appl Phys 52(12):7182CrossRefGoogle Scholar
- 43.Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23(3):327CrossRefGoogle Scholar
- 44.Fasano M, Chiavazzo E, Asinari P (2014) Nanoscale Res Lett 9(1):1CrossRefGoogle Scholar
- 45.Razavi SS, Hashemianzadeh SM, Karimi H (2011) J Mol Model 17(5):1163PubMedCrossRefGoogle Scholar
- 46.Salazar-Salinas K, Kubli-Garfias C, Seminario JM (2013) J Mol Model 19(7):2797PubMedCrossRefGoogle Scholar
- 47.Fasano M, Crisafulli A, Cardellini A, Bergamasco L, Chiavazzo E, Asinari P (2018) Mol Simul 45(4–5):417Google Scholar
- 48.Chiavazzo E, Fasano M, Asinari P, Decuzzi P (2014) Nat Commun 5:3565PubMedCentralCrossRefGoogle Scholar
- 49.Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089CrossRefGoogle Scholar
- 50.Hockney R, Eastwood J (1988) Computer simulation using particles. CRC Press, Boca RatonCrossRefGoogle Scholar
- 51.Falk M, Issels R (2001) Int J Hyperth 17(1):1CrossRefGoogle Scholar
- 52.Bergamasco L, Alberghini M, Fasano M, Cardellini A, Chiavazzo E, Asinari P (2018) Entropy 20(2):126CrossRefGoogle Scholar
- 53.Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474CrossRefGoogle Scholar