Advertisement

Insights into an alternative benzofuran binding mode and novel scaffolds of polyketide synthase 13 inhibitors

  • Süleyman Selim ÇınaroğluEmail author
  • Emel Timuçin
Original Paper

Abstract

Small molecules targeting biosynthesis of mycolic acids in the tuberculosis causing bacterium carry high potential for anti-tuberculosis drug discovery. Hitherto, benzofuran containing molecules were identified to target the thioesterase domain of polyketide synthase 13 (Pks13), one of the crucial constituents of this pathway. Among these, TAM16 was also reported to be highly potent in vivo. Here we performed a multi-stage virtual screening methodology recruiting both ligand- and structure-based screening tools for identification of novel Pks13 inhibitors. The large ZINC15 database comprising more than 1 billion ligands was reduced to 21,277 ligands with benzofuran rings and similarity to TAM16. This collection was screened by docking and the 20 top scoring ligands were further analyzed by molecular dynamics simulations. Molecular mechanics/generalized Born surface area (MM-GBSA) based binding free energy predictions confirmed five molecules in the ZINC15 database lead to remarkable increases in the binding free energy of TAM16. Essentially, the most potent ligand ZINC840169872, which carries a distinct scaffold with a cyclohexane group fused to the furan ring, produced a twofold change in the ligand efficiency of TAM16. Further, assessments of the structure-based tools on five different Pks13-TAM complex structures suggested a high-level agreement with the experiments, substantiating the validity of our methodology for screening Pks13 inhibitors. Overall, these in silico insights into a low energy benzofuran-based scaffold and an alternative binding mode for the benzofuran ring unravel viable strategies to generate potent anti-tuberculosis drugs, accentuating the applications of virtual screening approaches for exploring large compound libraries that cannot be easily accessed by experimentation.

Graphical abstract

In silico virtual screening of ZINC15 database for the identification of potential inhibitors targeting PKS13

Keywords

Tuberculosis Polyketide synthase 13 thioesterase domain Benzofuran ring Virtual screening ZINC15 

Notes

Acknowledgments

The authors thankfully acknowledge the support from TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) for the computational resources.

Supplementary material

894_2019_4010_MOESM1_ESM.docx (19.9 mb)
ESM 1 (DOCX 20331 kb)
894_2019_4010_MOESM2_ESM.xlsx (1.2 mb)
ESM 2 (XLSX 1191 kb)

References

  1. 1.
    Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in mycobacterium tuberculosis. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.18.1.81-101.2005 CrossRefGoogle Scholar
  2. 2.
    Bhatt A, Fujiwara N, Bhatt K et al (2007) Deletion of kasB in mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0608654104 CrossRefGoogle Scholar
  3. 3.
    Glickman MS, Cox JS, Jacobs WR (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of mycobacterium tuberculosis. Mol Cell.  https://doi.org/10.1016/S1097-2765(00)80250-6 CrossRefGoogle Scholar
  4. 4.
    Gavalda S, Bardou F, Laval F et al (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Biol 21:1660–1669.  https://doi.org/10.1016/j.chembiol.2014.10.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Bergeret F, Gavalda S, Chalut C et al (2012) Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J Biol Chem 287:33675–33690.  https://doi.org/10.1074/jbc.M111.325639 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilson R, Kumar P, Parashar V et al (2013) Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol.  https://doi.org/10.1038/nchembio.1277 CrossRefGoogle Scholar
  7. 7.
    Aggarwal A, Parai MK, Shetty N et al (2017) Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell 170:1–11.  https://doi.org/10.1016/j.cell.2017.06.025 CrossRefGoogle Scholar
  8. 8.
    Xu Z, Zhao S, Lv Z et al (2018) Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur J Med Chem.  https://doi.org/10.1016/j.ejmech.2018.11.025 CrossRefGoogle Scholar
  9. 9.
    Guo H (2018) Design, synthesis, and in vitro anti-mycobacterial activities of propylene tethered Benzofuran-Isatin hybrids. J Heterocyclic Chem.  https://doi.org/10.1002/jhet.3387 CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Wang R, Zhang T et al (2018) Benzofuran-isatin-hydroxylimine/thiosemicarbazide hybrids: design, synthesis and in vitro anti-mycobacterial activity evaluation. Chin Chem Lett.  https://doi.org/10.1016/j.cclet.2018.11.032 CrossRefGoogle Scholar
  11. 11.
    Gao F, Yang H, Lu T et al (2018) Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur J Med Chem 159:277–281.  https://doi.org/10.1016/j.ejmech.2018.09.049 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang W, Lun S, Wang SH et al (2018) Identification of novel Coumestan derivatives as polyketide synthase 13 inhibitors against mycobacterium tuberculosis. J Med Chem.  https://doi.org/10.1021/acs.jmedchem.7b01319 CrossRefGoogle Scholar
  13. 13.
    Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75.  https://doi.org/10.1038/nbt1273 CrossRefPubMedGoogle Scholar
  14. 14.
    Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198.  https://doi.org/10.1006/jmbi.1998.2439 CrossRefPubMedGoogle Scholar
  15. 15.
    Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373.  https://doi.org/10.1146/annurev.biophys.32.110601.142532 CrossRefPubMedGoogle Scholar
  16. 16.
    Brown SP, Muchmore SW (2006) High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. J Chem Inf Model 46:999–1005.  https://doi.org/10.1021/ci050488t CrossRefPubMedGoogle Scholar
  17. 17.
    Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818.  https://doi.org/10.1126/science.1096361 CrossRefPubMedGoogle Scholar
  18. 18.
    Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865.  https://doi.org/10.1038/nature03197 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3:160–178.  https://doi.org/10.1016/S1359-6446(97)01163-X CrossRefGoogle Scholar
  20. 20.
    Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975.  https://doi.org/10.1039/C6CP01555G CrossRefPubMedGoogle Scholar
  21. 21.
    Shen C, Wang Z, Yao X et al (2018) Comprehensive assessment of nine docking programs on type II kinase inhibitors: prediction accuracy of sampling power, scoring power and screening power. Brief Bioinform.  https://doi.org/10.1093/bib/bby103
  22. 22.
    Çınaroğlu SS, Timuçin E (2018) In silico identification of inhibitors targeting N-terminal domain of human replication protein a. J Mol Graph Model.  https://doi.org/10.1016/j.jmgm.2018.10.011 CrossRefGoogle Scholar
  23. 23.
    Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768.  https://doi.org/10.1021/ci3001277 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sterling T, Irwin JJ (2015) ZINC15–ligand discovery for everyone. J Chem Inf Model 55:2324–2337.  https://doi.org/10.1021/acs.jcim.5b00559 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhao H, Dong J, Lafleur K et al (2012) Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics. ACS Med Chem Lett 3:834–838.  https://doi.org/10.1021/ml3001984 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhao H, Caflisch A (2013) Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg Med Chem Lett 23:5721–5726.  https://doi.org/10.1016/j.bmcl.2013.08.009 CrossRefPubMedGoogle Scholar
  27. 27.
    Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102.  https://doi.org/10.1007/s12551-016-0247-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang N, Zhao H (2016) Enriching screening libraries with bioactive fragment space. Bioorg Med Chem Lett 26:3594–3597.  https://doi.org/10.1016/j.bmcl.2016.06.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao H, Huang D (2011) Hydrogen bonding penalty upon ligand binding. PLoS One 6.  https://doi.org/10.1371/journal.pone.0019923 CrossRefGoogle Scholar
  30. 30.
    Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156.  https://doi.org/10.1002/jcc.23905 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lang PT, Brozell SR, Mukherjee S et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15:1219–1230.  https://doi.org/10.1261/rna.1563609 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Graves AP, Shivakumar DM, Boyce SE et al (2008) Rescoring docking hit lists for model cavity sites: predictions and experimental testing. J Mol Biol 377:914–934.  https://doi.org/10.1016/j.jmb.2008.01.049 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32.  https://doi.org/10.1093/nar/gkh381 CrossRefGoogle Scholar
  34. 34.
    Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct, Funct, Bioinf 78:1950–1958.  https://doi.org/10.1002/prot.22711 CrossRefGoogle Scholar
  35. 35.
    Wang J, Wang W, Kollman PA, Case DA (2001) Antechamber, an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403.  https://doi.org/10.1016/j.jmgm.2005.12.005 CrossRefGoogle Scholar
  36. 36.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefPubMedGoogle Scholar
  37. 37.
    Pearlman DA, Case DA, Caldwell JW et al (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41.  https://doi.org/10.1016/0010-4655(95)00041-D CrossRefGoogle Scholar
  38. 38.
    Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci.  https://doi.org/10.1002/wcms.1121 Google Scholar
  39. 39.
    Zhou Y, McGillick BE, Y-HG T et al (2016) Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity. Bioorg Med Chem 24:4875–4889.  https://doi.org/10.1016/j.bmc.2016.07.031 CrossRefPubMedGoogle Scholar
  40. 40.
    Holden PM, Allen WJ, Gochin M, Rizzo RC (2014) Strategies for lead discovery: application of footprint similarity targeting HIVgp41. Bioorg Med Chem 22:651–661.  https://doi.org/10.1016/j.bmc.2013.10.022 CrossRefPubMedGoogle Scholar
  41. 41.
    Balius TE, Rizzo RC (2009) Quantitative prediction of fold resistance for inhibitors of EGFR. Biochemistry 48:8435–8448.  https://doi.org/10.1021/bi900729a CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys.  https://doi.org/10.1063/1.448118 CrossRefGoogle Scholar
  43. 43.
    Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593.  https://doi.org/10.1063/1.470117 CrossRefGoogle Scholar
  44. 44.
    BIOvIA DS (2015) Discovery studio modeling environment. San Diego, Dassault Syst Release 4:98–104Google Scholar
  45. 45.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38.  https://doi.org/10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  46. 46.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  47. 47.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10:449–461.  https://doi.org/10.1517/17460441.2015.1032936 CrossRefGoogle Scholar
  48. 48.
    Kumari R, Kumar R, Lynn A (2014) G-mmpbsa -a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962.  https://doi.org/10.1021/ci500020m CrossRefPubMedGoogle Scholar
  49. 49.
    Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98:10037–10041.  https://doi.org/10.1073/pnas.181342398 CrossRefPubMedGoogle Scholar
  50. 50.
    Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321.  https://doi.org/10.1021/ct300418h CrossRefPubMedGoogle Scholar
  51. 51.
    Nissink JWM (2009) Simple size-independent measure of ligand efficiency. J Chem Inf Model.  https://doi.org/10.1021/ci900094m CrossRefGoogle Scholar
  52. 52.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang L, Pang X, Li Y et al (2017) RADER: a RApid DEcoy retriever to facilitate decoy based assessment of virtual screening. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btw783
  54. 54.
    Lätti S, Niinivehmas S, Pentikäinen OT (2016) Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J Cheminform.  https://doi.org/10.1186/s13321-016-0158-y
  55. 55.
    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717.  https://doi.org/10.1038/srep42717 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17.  https://doi.org/10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  57. 57.
    Veber DF, Johnson SR, Cheng H-Y et al (2002) Molecular properties that influence the Oral bioavailability of drug candidates. J Med Chem 45:2615–2623.  https://doi.org/10.1021/jm020017n CrossRefPubMedGoogle Scholar
  58. 58.
    Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68.  https://doi.org/10.1021/cc9800071 CrossRefPubMedGoogle Scholar
  59. 59.
    Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877.  https://doi.org/10.1021/jm000292e CrossRefPubMedGoogle Scholar
  60. 60.
    Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44:1841–1846.  https://doi.org/10.1021/jm015507e CrossRefPubMedGoogle Scholar
  61. 61.
    Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263.  https://doi.org/10.1093/nar/gky318 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Banerjee P, Dehnbostel FO, Preissner R (2018) Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem 6.  https://doi.org/10.3389/fchem.2018.00362
  63. 63.
    Drwal MN, Banerjee P, Dunkel M et al (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:W53–W58.  https://doi.org/10.1093/nar/gku401 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11:1189–1202.  https://doi.org/10.2174/1381612053507549 CrossRefPubMedGoogle Scholar
  65. 65.
    Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug Discov Today 16:372–376.  https://doi.org/10.1016/j.drudis.2011.02.011 CrossRefPubMedGoogle Scholar
  66. 66.
    Koeppen H, Kriegl J, Lessel U, et al (2011) Ligand-Based Virtual Screening. Virtual screening: principles, challenges, and practical guidelines, pp 61–85. doi:  https://doi.org/10.1002/9783527633326.ch3 Google Scholar
  67. 67.
    Cummings MD, DesJarlais RL, Gibbs AC et al (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48:962–976.  https://doi.org/10.1021/jm049798d CrossRefPubMedGoogle Scholar
  68. 68.
    Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins Struct Funct Genet 57:225–242.  https://doi.org/10.1002/prot.20149 CrossRefPubMedGoogle Scholar
  69. 69.
    Mohan V, Gibbs A, Cummings M et al (2005) Docking: successes and challenges. Curr Pharm Des 11:323–333.  https://doi.org/10.2174/1381612053382106 CrossRefPubMedGoogle Scholar
  70. 70.
    Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47:1609–1618.  https://doi.org/10.1021/ci7000378 CrossRefPubMedGoogle Scholar
  71. 71.
    Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931.  https://doi.org/10.1021/jm050362n CrossRefPubMedGoogle Scholar
  72. 72.
    Er M, Abounakhla AM, Tahtaci H et al (2018) An integrated approach towards the development of novel antifungal agents containing thiadiazole: synthesis and a combined similarity search, homology modelling, molecular dynamics and molecular docking study. Chem Cent J 12:121.  https://doi.org/10.1186/s13065-018-0485-3 CrossRefPubMedGoogle Scholar
  73. 73.
    Cruz JN, Costa JFS, Khayat AS et al (2018) Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of mycobacterium tuberculosis polyketide synthase 13. J Biomol Struct Dyn:1–12.  https://doi.org/10.1080/07391102.2018.1462734 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biostatistics and Medical Informatics, School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey

Personalised recommendations