Advertisement

Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study

  • Yogesh Badhe
  • Rakesh GuptaEmail author
  • Beena Rai
Original Paper
  • 90 Downloads

Abstract

Skin provides excellent protection against the harsh external environment and foreign substances. The lipid matrix of the stratum corneum, which contains various kinds of ceramides, plays a major role in the barrier function of the skin. Here we report a study of the effects of ceramide type on the structural and transport properties of ceramide bilayers using molecular dynamics (MD) simulations. Specifically, the effects of headgroup chemistry (number and positions of hydroxyl groups) and tail structure (unsaturation of the sphingoid moiety) on the structural and transport properties of various ceramide bilayers at 310 K were analyzed. Theoretical results for structural properties such as area per lipid, bilayer thickness, lateral arrangement, order parameter, and hydrogen bonding are reported here and compared with corresponding experimental data. Our study revealed that the presence of a double bond disrupts the bilayer packing, which leads to a low area compressibility modulus, a large area per lipid, and low bilayer thickness. Furthermore, the effect of structural changes on water permeation was studied using steered MD simulations. Water permeation was found to be influenced by headgroup polarity, chain packing, and the ability of the water to hydrogen bond with the ceramides. The molecular-level information obtained from the current study should aid the design of mixed bilayer systems with desired properties and provide the basis for the development of higher order coarse-grained models.

Keywords

Skin lipids Molecular dynamics Permeation Potential of mean force Lipid bilayer Structure–property relationship 

Notes

Acknowledgments

The authors would like to thank:

• High Performance Computing at Tata Consultancy Services (TCS) for providing access to the EKA supercomputer.

• Mr. K Ananth Krishnan, CTO, Tata Consultancy Services, for his constant encouragement and support during this project.

This research was funded by Tata Consultancy Services (TCS), CTO organization.

Supplementary material

894_2019_4008_MOESM1_ESM.pdf (899 kb)
ESM 1 (PDF 899 kb)

References

  1. 1.
    Smith WP, Christensen MS, Nacht S, Gans EH (1982) Effect of lipids on the aggregation and permeability of human stratum corneum. J Investig Dermatol 78(1):7–11PubMedGoogle Scholar
  2. 2.
    Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Investig Dermatol 80:44s–9sPubMedGoogle Scholar
  3. 3.
    Holbrook KA, Odland GF (1974) Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Investig Dermatol 62(4):415–422PubMedGoogle Scholar
  4. 4.
    Loomans ME, Hannon DP (1970) An electron microscopic study of the effects of subtilisin and detergents on human stratum corneum. J Investig Dermatol 55(2):101–114PubMedGoogle Scholar
  5. 5.
    Scheuplein RJ, Morgan LJ (1967) “Bound water” in keratin membranes measured by a microbalance technique. Nature 214(5087):456PubMedGoogle Scholar
  6. 6.
    Wertz PW, van den Bergh B (1998) The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91(2):85PubMedGoogle Scholar
  7. 7.
    Moore DJ, Rawlings AV (2017) The chemistry, function and (patho) physiology of stratum corneum barrier ceramides. Int J Cosmet Sci 39(4):366–372PubMedGoogle Scholar
  8. 8.
    Tessema EN, Gebre-Mariam T, Neubert RHH, Wohlrab J (2017) Potential applications of phyto-derived ceramides in improving epidermal barrier function. Skin Pharmacol Physiol 30(3):115–138PubMedGoogle Scholar
  9. 9.
    Vavrova K, Hrabalek A, Mac-Mary S, Humbert P, Muret P (2007) Ceramide analogue 14S24 selectively recovers perturbed human skin barrier. Br J Dermatol 157(4):704–712PubMedGoogle Scholar
  10. 10.
    Novotny J, Hrabálek A, Vávrová K (2010) Synthesis and structure-activity relationships of skin ceramides. Curr Med Chem 17(21):2301–2324PubMedGoogle Scholar
  11. 11.
    t’Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K (2011) Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal Chem 84(1):403–411PubMedGoogle Scholar
  12. 12.
    van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ (2014) Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta Mol Cell Biol Lipids 1841(1):70–79Google Scholar
  13. 13.
    Rabionet M, Bayerle A, Marsching C, Jennemann R, Grone H-J, Yildiz Y, Wachten D, Shaw W, Shayman JA, Sandhoff R (2013) 1-O-acylceramides are natural components of human and mouse epidermis. J Lipid Res 54:3312–3321PubMedPubMedCentralGoogle Scholar
  14. 14.
    Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y et al (2009) Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 50(8):1708–1719PubMedPubMedCentralGoogle Scholar
  15. 15.
    Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta Mol Basis Dis 1182(2):147–151Google Scholar
  16. 16.
    Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T et al (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49(7):1466–1476PubMedGoogle Scholar
  17. 17.
    Hill J, Paslin D, Wertz PW (2006) A new covalently bound ceramide from human stratum corneum-w-hydroxyacylphytosphingosine. Int J Cosmet Sci 28(3):225–230PubMedGoogle Scholar
  18. 18.
    Stahlberg S, Eichner A, Sonnenberger S, Kovácik A, Lange S, Schmitt T, Demé B, Hauss T, Dobner B, Neubert RHH et al (2017) Influence of a novel dimeric ceramide molecule on the nanostructure and thermotropic phase behavior of a stratum corneum model mixture. Langmuir 33(36):9211–9221PubMedGoogle Scholar
  19. 19.
    Engelbrecht TN, Demé B, Dobner B, Neubert RHH (2012) Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Skin Pharmacol Physiol 25(4):200–207PubMedGoogle Scholar
  20. 20.
    Stahlberg S, Lange S, Dobner B, Huster D (2016) Probing the role of ceramide headgroup polarity in short-chain model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir 32(8):2023–2031PubMedGoogle Scholar
  21. 21.
    Schroeter A, Stahlberg S, Školová B, Sonnenberger S, Eichner A, Huster D, Vávrová K, Hauß T, Dobner B, Neubert RHH et al (2017) Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. Soft Matter 13(10):2107–2119PubMedGoogle Scholar
  22. 22.
    Stahlberg S, Školová B, Madhu PK, Vogel A, Vávrová K, Huster D (2015) Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir 31(17):4906–4915PubMedGoogle Scholar
  23. 23.
    Crowther JM, Matts PJ (2017) Molecular concentration profiling in the skin using confocal Raman spectroscopy. In: Farage MA, Miller KW, Elsner P, Maibach HI (eds) Textbook of aging skin. Springer, Berlin, pp 1171–1187Google Scholar
  24. 24.
    Školová B, Kováčik A, Tesař O, Opálka L, Vávrová K (2017) Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim Biophys Acta Biomembr 1859(5):824–834PubMedGoogle Scholar
  25. 25.
    Kováčik A, Silarova M, Pullmannova P, Maixner J, Vávrová K (2017) Effects of 6-hydroxyceramides on the thermotropic phase behavior and permeability of model skin lipid membranes. Langmuir 33(11):2890–2899PubMedGoogle Scholar
  26. 26.
    Sadowski T, Klose C, Gerl MJ, Wójcik-Maciejewicz A, Herzog R, Simons K, Reich A, Surma MA (2017) Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry. Sci Rep 7:43761Google Scholar
  27. 27.
    t’Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K (2012) Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal Chem 84:403–411PubMedGoogle Scholar
  28. 28.
    Bouwstra JA, Gooris GS (2010) The lipid organisation in human stratum corneum and model systems. Open Dermatol J 4:10–13Google Scholar
  29. 29.
    Lee CT, Comer J, Herndon C, Leung N, Pavlova A, Swift RV, Tung C, Rowley CN, Amaro RE, Chipot C et al (2016) Simulation-based approaches for determining membrane permeability of small compounds. J Chem Inf Model 56(4):721–733PubMedPubMedCentralGoogle Scholar
  30. 30.
    Guo S, Moore TC, Iacovella CR, Strickland LA, McCabe C (2013) Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid headgroup chemistry. J Chem Theory Comput 9:5116–5126PubMedPubMedCentralGoogle Scholar
  31. 31.
    Notman R, Anwar J (2013) Breaching the skin barrier—insights from the molecular simulation of model membranes. Adv Drug Deliv Rev 65(2):237–250Google Scholar
  32. 32.
    Vermeer LS, De Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36(8):919–931PubMedGoogle Scholar
  33. 33.
    Ingólfsson HI, Arnarez C, Periole X, Marrink SJ (2016) Computational microscopy of cellular membranes. J Cell Sci:176040Google Scholar
  34. 34.
    Wong-ekkabut J, Karttunen M (2016) The good, the bad and the user in soft matter simulations. Biochim Biophys Acta Biomembr 1858(10):2529–2538Google Scholar
  35. 35.
    Reißer S, Poger D, Stroet M, Mark AE (2017) Real cost of speed: the effect of a timesaving multiple-time-stepping algorithm on the accuracy of molecular dynamics simulations. J Chem Theory Comput 13(6):2367–2372PubMedGoogle Scholar
  36. 36.
    Gupta R, Dwadasi BS, Rai B (2016) Molecular dynamics simulation of skin lipids: effect of ceramide chain lengths on bilayer properties. J Phys Chem B 120(49):12536–12546PubMedGoogle Scholar
  37. 37.
    Gupta R, Sridhar DB, Rai B (2016) Molecular dynamics simulation study of permeation of molecules through skin lipid bilayer. J Phys Chem B 120(34):8987–8996PubMedGoogle Scholar
  38. 38.
    Gupta R, Rai B (2015) Molecular dynamics simulation study of skin lipids: effects of the molar ratio of individual components over a wide temperature range. J Phys Chem B 119(35):11643–11655PubMedGoogle Scholar
  39. 39.
    Imai Y, Liu X, Yamagishi J, Mori K, Neya S, Hoshino T (2010) Computational analysis of water residence on ceramide and sphingomyelin bilayer membranes. J Mol Graph Model 29(3):461–469PubMedGoogle Scholar
  40. 40.
    Das C, Olmsted PD, Noro MG (2009) Water permeation through stratum corneum lipid bilayers from atomistic simulations. Soft Matter 5(22):4549–4555Google Scholar
  41. 41.
    Das C, Noro MG, Olmsted PD (2009) Simulation studies of stratum corneum lipid mixtures. Biophys J 97(7):1941–1951PubMedPubMedCentralGoogle Scholar
  42. 42.
    Notman R, den Otter WK, Noro MG, Briels WJ, Anwar J (2007) The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys J 93(6):2056–2068PubMedPubMedCentralGoogle Scholar
  43. 43.
    Pandit SA, Scott HL (2006) Molecular-dynamics simulation of a ceramide bilayer. J Chem Phys 124(1):014708Google Scholar
  44. 44.
    Rawlings AV, Watkinson A, Rogers J, Mayo A-M, Hope J, Scott IR (1994) Abnormalities in stratum corneum structure, lipid composition, and desmosome degradation in soap induced winter xerosis. J Soc Cosmet Chem 45(4):203–220Google Scholar
  45. 45.
    Schreiner V, Pfeiffer S, Lanzendörfer G, Wenck H, Diembeck W, Gooris GS, Proksch E, Bouwstra J (2000) Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J Investig Dermatol 114(4):654–660PubMedGoogle Scholar
  46. 46.
    Paloncýová M, DeVane RH, Murch BP, Berka K, Otyepka M (2014) Rationalization of reduced penetration of drugs through ceramide gel phase membrane. Langmuir 30(46):13942–13948PubMedGoogle Scholar
  47. 47.
    Paloncýová M, Vávrová K, Sovová Ž, DeVane R, Otyepka M, Berka K (2015) Structural changes in ceramide bilayers rationalize increased permeation through stratum corneum models with shorter acyl tails. J Phys Chem B 119(30):9811–9819PubMedGoogle Scholar
  48. 48.
    Gupta R, Rai B (2016) Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys Chem B 120(29):7133–7142PubMedGoogle Scholar
  49. 49.
    Gupta R, Rai B (2017) Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep 7:45292PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gupta R, Kashyap N, Rai B (2017) Transdermal cellular membrane penetration of proteins with gold nanoparticles: a molecular dynamics study. Phys Chem Chem Phys 19(11):7537–7545PubMedGoogle Scholar
  51. 51.
    Gupta R, Rai B (2017) Molecular dynamics simulation study of translocation of fullerene C60 through skin bilayer: effect of concentration on barrier properties. Nanoscale 9(12):4114–4127PubMedGoogle Scholar
  52. 52.
    Gupta R, Kashyap N, Rai B (2018) Molecular mechanism of transdermal co-delivery of interferon-alpha protein with gold nanoparticle—a molecular dynamics study. Mol Simul 44(4):274–284Google Scholar
  53. 53.
    Engelbrecht TN, Schroeter A, Hauß T, Demé B, Scheidt HA, Huster D, Neubert RHH (2012) The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter 8(24):6599–6607Google Scholar
  54. 54.
    Engelbrecht T, Hauß T, Süb K, Vogel A, Roark M, Feller SE, Neubert RHH, Dobner B (2011) Characterisation of a new ceramide EOS species: synthesis and investigation of the thermotropic phase behaviour and influence on the bilayer architecture of stratum corneum lipid model membranes. Soft Matter 7(19):8998–9011Google Scholar
  55. 55.
    Narangifard A, den Hollander L, Wennberg CL, Lundborg M, Lindahl E, Iwai I, Han H, Masich S, Daneholt B, Norlén L (2018) Human skin barrier formation takes place via a cubic to lamellar lipid phase transition as analyzed by cryo-electron microscopy and EM-simulation. Exp Cell Res 366(2):139–151PubMedGoogle Scholar
  56. 56.
    van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, GroningenGoogle Scholar
  57. 57.
    Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5):2002–2013PubMedPubMedCentralGoogle Scholar
  58. 58.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690Google Scholar
  59. 59.
    Ryckaert J-P, Bellemans A (1975) Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30(1):123–125Google Scholar
  60. 60.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25Google Scholar
  61. 61.
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164PubMedGoogle Scholar
  62. 62.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Dordrecht, pp 331–342Google Scholar
  63. 63.
    Berendsen HJC, van Postma JPM, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690Google Scholar
  64. 64.
    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268Google Scholar
  65. 65.
    Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076Google Scholar
  66. 66.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695Google Scholar
  67. 67.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190Google Scholar
  68. 68.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472Google Scholar
  69. 69.
    Miyamoto S, Kollman PA (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962Google Scholar
  70. 70.
    Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199Google Scholar
  71. 71.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021Google Scholar
  72. 72.
    Abraham MJ, van der Spoel D, Lindahl E, Hess B, The GROMACS Development Team (2018) GROMACS user manual, version 2016. www.gromacs.org
  73. 73.
    Pascher I (1976) Molecular arrangements in sphingolipids conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta Biomembr 455(2):433–451Google Scholar
  74. 74.
    White SH, King GI (1985) Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci 82(19):6532–6536PubMedGoogle Scholar
  75. 75.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38PubMedGoogle Scholar
  76. 76.
    Egberts E, Marrink S-J, Berendsen HJC (1994) Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22(6):423–436PubMedGoogle Scholar
  77. 77.
    Marrink SJ, Berendsen HJC (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100(41):16729–16738Google Scholar
  78. 78.
    Palaiokostas M, Ding W, Shahane G, Orsi M (2018) Effects of lipid composition on membrane permeation. Soft Matter 14(42):8496–8508PubMedGoogle Scholar
  79. 79.
    Rerek ME, Chen H-c, Markovic B, Van Wyck D, Garidel P, Mendelsohn R, Moore DJ (2001) Phytosphingosine and sphingosine ceramide headgroup hydrogen bonding: structural insights through thermotropic hydrogen/deuterium exchange. J Phys Chem B 105(38):9355–9362Google Scholar
  80. 80.
    Yappert MC, Borchman D (2004) Sphingolipids in human lens membranes: an update on their composition and possible biological implications. Chem Phys Lipids 129(1):1–20PubMedGoogle Scholar
  81. 81.
    Dickey A, Faller R (2008) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95(6):2636–2646PubMedPubMedCentralGoogle Scholar
  82. 82.
    Murzyn K, Zhao W, Karttunen M, Kurdziel M, Róg T (2006) Dynamics of water at membrane surfaces: effect of headgroup structure. Biointerphases 1(3):98–105PubMedGoogle Scholar
  83. 83.
    Chiu S-W, Jakobsson E, Subramaniam S, Scott HL (1999) Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys J 77(5):2462–2469PubMedPubMedCentralGoogle Scholar
  84. 84.
    Feller SE, Yin D, Pastor RW, MacKerell Jr AD (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J 73(5):2269–2279PubMedPubMedCentralGoogle Scholar
  85. 85.
    Brockman HL, Momsen MM, Brown RE, He L, Chun J, Byun H-S, Bittman R (2004) The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys J 87(3):1722–1731PubMedPubMedCentralGoogle Scholar
  86. 86.
    Vorobyov I, Yappert MC, DuPré DB (2002) Energetic and topological analyses of cooperative σH- and πH-bonding interactions. J Phys Chem A 106(44):10691–10699Google Scholar
  87. 87.
    Kiselev MA, Ryabova NY, Balagurov AM, Dante S, Hauss T, Zbytovska J, Wartewig S, Neubert RHH (2005) New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur Biophys J 34(8):1030–1040PubMedGoogle Scholar
  88. 88.
    Schmitt T, Lange S, Dobner B, Sonnenberger S, Hauß T, Neubert RHH (2017) Investigation of a CER[NP]- and [AP]-based stratum corneum modeling membrane system: using specifically deuterated CER together with a neutron diffraction approach. Langmuir 34(4):1742–1749PubMedGoogle Scholar
  89. 89.
    Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M (1996) Phase behavior of isolated skin lipids. J Lipid Res 37(5):999–1011PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Science Research Area, TCS Research, Tata Research Development and Design CentreTata Consultancy ServicesPuneIndia

Personalised recommendations