Advertisement

Microsecond molecular dynamics simulations and dynamic network analysis provide understanding of the allosteric inactivation of GSK3β induced by the L343R mutation

  • Jun Li
  • Qiang Fu
  • Yang Liang
  • Biao ChengEmail author
  • Xiaolong LiEmail author
Original Paper

Abstract

Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, is involved in several human diseases, including type II diabetes, mood disorders, prostate cancer, and Alzheimer’s disease, representing a potential therapeutic target. GSK3β has a unique specificity, with its primed substrates binding to the primed phosphate binding site, which is critical for the catalytic activity of GSK3β. An L343R mutation located at the C-lobe of GSK3β, remote from the catalytic site, causes kinase inactivation. However, the detailed mechanism of this remains unclear. Here, microsecond molecular dynamics (MD) simulations and network analysis were performed to elucidate the allosteric inactivation of GSK3β triggered by the L343R mutation. Large-scale MD simulations of wild-type and the L343R mutant revealed that the L343R mutation caused disruption of the chemical environment near the mutation site, which propagated remotely to affect the conformational dynamics of the activation loop (A-loop). The resulting conformational rearrangement of the A-loop in the L343R mutant disrupted the primed phosphate binding site, thereby abrogating the catalytic activity of GSK3β. Furthermore, network analysis identified the allosteric pathway from R343 to the primed phosphate binding site in the L343R mutant. Collectively, the results of this study provide a mechanistic explanation of how the L343R mutation allosterically affects the functional activity of GSK3β, which contributes to our understanding of GSK3β biology.

Keywords

Allostery Allosteric pathway Primed substrates Conformational dynamics Phosphorylation 

Notes

Acknowledgments

The authors thank the High Performance Supercomputer Center at Shanghai.

Funding

The study was supported by the grants from the Natural Science Foundation of China (No. 81372005, 81401851 and 31371011); Scientific Research Projects supported by the Shanghai Committee of Science and Technology (No. 13DZ194808 and 15441904403); Scientific Research Project supported by Shanghai Municipal Commission of Health and Family Planning (No. 20134244).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282CrossRefGoogle Scholar
  2. 2.
    Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22CrossRefGoogle Scholar
  3. 3.
    Lambert GK, Duhme-Klair AK, Morgan T, Ramjee MK (2013) The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov Today 18:992–999CrossRefGoogle Scholar
  4. 4.
    Lu S, Jang H, Gu S, Zhang J, Nussinov R (2016) Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 45:4929–4952CrossRefGoogle Scholar
  5. 5.
    Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36:422–439CrossRefGoogle Scholar
  6. 6.
    Ali A, Hoeflich KP, Woodgett JR (2001) Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev 101:2527–2540CrossRefGoogle Scholar
  7. 7.
    Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131CrossRefGoogle Scholar
  8. 8.
    McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM (2016) Effects of mutations in Wnt/β-catenin, hedgehog, notch and PI3K pathways on GSK-3 activity-diverse effects on cell growth, metabolism and cancer. Biochim Biophys Acta 1863:2942–2976CrossRefGoogle Scholar
  9. 9.
    Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R, Ahmadiani A (2015) Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease. Pharmacol Res 97:16–26CrossRefGoogle Scholar
  10. 10.
    Osolodkin DI, Palyulin VA, Zefirov NS (2013) Glycogen synthase kinase 3 as an anticancer drug target: novel experimental findings and trends in the design of inhibitors. Curr Pharm Des 19:665–679CrossRefGoogle Scholar
  11. 11.
    Arfeen M, Bharatam PV (2013) Design of Glycogen Synthase Kinase-3 inhibitors: an overview on recent advancements. Curr Pharm Des 19:4755–4775CrossRefGoogle Scholar
  12. 12.
    Saraswati AP, Ali Hussaini SM, Krishna NH, Babu BN, Kamal A (2018) Glycogen synthase kinase-3 and its inhibitors: potential target for various therapeutic conditions. Eur J Med Chem 144:843–858CrossRefGoogle Scholar
  13. 13.
    Tesch R, Becker C, Müller MP, Beck ME, Quambusch L, Getlik M, Lategahn J, Uhlenbrock N, Costa FN, Polêto MD, Pinheiro P de SM, Rodrigues DA, Sant’Anna CMR, Ferreira FF, Verli H, Fraga CAM, Rauh D (2018) An unusual intramolecular halogen bond guides conformational selection. Angew Chemie Int Ed 57:9970–9975CrossRefGoogle Scholar
  14. 14.
    Pardhi T, Vasu K (2018) Identification of dual kinase inhibitors of CK2 and GSK3β: combined qualitative and quantitative pharmacophore modeling approach. J Biomol Struct Dyn 36:177–194CrossRefGoogle Scholar
  15. 15.
    Palomo V, Soteras I, Perez DI, Perez C, Gil C, Campillo NE, Martinez A (2011) Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem 54:8461–8470CrossRefGoogle Scholar
  16. 16.
    Zhang P, Li S, Gao Y, Lu W, Huang K, Ye D, Li X, Chu Y (2014) Novel benzothiazinones (BTOs) as allosteric modulator or substrate competitive inhibitor of glycogen synthase kinase 3β (GSK-3β) with cellular activity of promoting glucose uptake. Bioorganic Med Chem Lett 24:5639–5643CrossRefGoogle Scholar
  17. 17.
    Baruah J, Hitzman R, Zhang J, Chaudhuri S, Mastej V, Wary KK (2017) The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model. J Biol Chem 292:20785–20798CrossRefGoogle Scholar
  18. 18.
    Palomo V, Perez DI, Roca C, Anderson C, Rodríguez-Muela N, Perez C, Morales-Garcia JA, Reyes JA, Campillo NE, Perez-Castillo AM, Rubin LL, Timchenko L, Gil C, Martinez A (2017) Subtly modulating glycogen synthase kinase 3 β: allosteric inhibitor development and their potential for the treatment of chronic diseases. J Med Chem 60:4983–5001CrossRefGoogle Scholar
  19. 19.
    Brogi S, Ramunno A, Savi L, Chemi G, Alfano G, Pecorelli A, Pambianchi E, Galatello P, Compagnoni G, Focher F, Biamonti G, Valacchi G, Butini S, Gemma S, Campiani G, Brindisi M (2017) First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur J Med Chem 138:438–457CrossRefGoogle Scholar
  20. 20.
    Bidon-Chanal A, Fuertes A, Alonso D, Pérez DI, Martínez A, Luque FJ, Medina M (2013) Evidence for a new binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem 60:479–489CrossRefGoogle Scholar
  21. 21.
    Cole AR (2013) Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J 280:5213–5227CrossRefGoogle Scholar
  22. 22.
    Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, Eisenstein M (2010) Substrate competitive GSK-3 inhibitors—strategy and implications. Biochim Biophys Acta 1804:598–603CrossRefGoogle Scholar
  23. 23.
    ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8:593–596CrossRefGoogle Scholar
  24. 24.
    Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H (2006) Identification of novel glycogen synthase kinase-3β substrate-interacting residues suggests a common mechanism for substrate recognition. J Biol Chem 281:30621–30630CrossRefGoogle Scholar
  25. 25.
    Lu S-Y, Jiang Y-J, Zou J-W, Wu T-X (2011) Molecular modeling and molecular dynamics simulation studies of the GSK3β/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3β substrates. J Chem Inf Model 51:1025–1036CrossRefGoogle Scholar
  26. 26.
    Arfeen M, Patel R, Khan T, Bharatam PV (2015) Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. J Biomol Struct Dyn 33:2578–2593CrossRefGoogle Scholar
  27. 27.
    Lu S, Jiang Y, Lv J, Zou J, Wu T (2011) Mechanism of kinase inactivation and nonbinding of FRATide to GSK3β due to K85M mutation: molecular dynamics simulation and normal mode analysis. Biopolymers 95:669–681CrossRefGoogle Scholar
  28. 28.
    Sun H, Jiang Y, Yu Q, Luo C, Zou J (2008) Effect of mutation K85R on GSK-3beta: molecular dynamics simulation. Biochem Biophys Res Commun 377:962–965CrossRefGoogle Scholar
  29. 29.
    Zhang N, Jiang Y, Zou J, Yu Q, Zhao W (2009) Structural basis for the complete loss of GSK3beta catalytic activity due to R96 mutation investigated by molecular dynamics study. Proteins 75:671–681CrossRefGoogle Scholar
  30. 30.
    Howng S-L, Hwang C-C, Hsu C-Y, Hsu M-Y, Teng C-Y, Chou C-H, Lee M-F, Wu C-H, Chiou S-J, Lieu A-S, Loh J-K, Yang C-N, Lin C-S, Hong Y-R (2010) Involvement of the residues of GSKIP, AxinGID, and FRATtide in their binding with GSK3beta to unravel a novel C-terminal scaffold-binding region. Mol Cell Biochem 339:23–33CrossRefGoogle Scholar
  31. 31.
    Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R (2010) Allosteric regulation of glycogen synthase kinase 3β: a theoretical study. Biochemistry 49:10890–10901CrossRefGoogle Scholar
  32. 32.
    Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J (2016) Ras conformational ensembles, Allostery, and signaling. Chem Rev 116:6607–6665CrossRefGoogle Scholar
  33. 33.
    Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34:1242–1285CrossRefGoogle Scholar
  34. 34.
    Lu S, Zhang J (2017) Designed covalent allosteric modulators: an emerging paradigm in drug discovery. Drug Discov Today 22:447–453CrossRefGoogle Scholar
  35. 35.
    Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74CrossRefGoogle Scholar
  36. 36.
    Du Y, Yang H, Xu Y, Cang X, Luo C, Mao Y, Wang Y, Qin G, Luo X, Jiang H (2012) Conformational transition and energy landscape of ErbB4 activated by Neuregulin1β: one microsecond molecular dynamics simulations. J Am Chem Soc 134:6720–6731CrossRefGoogle Scholar
  37. 37.
    Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J (2015) The mechanism of ATP-dependent allosteric protection of Akt kinase phosphorylation. Structure 23:1725–1734CrossRefGoogle Scholar
  38. 38.
    Lu S, Ji M, Ni D, Zhang J (2018) Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today 23:359–365CrossRefGoogle Scholar
  39. 39.
    Mou L, Li M, Lu SY, Li S, Shen Q, Zhang J, Li C, Lu X (2014) Unraveling the role of Arg4 and Arg6 in the auto-inhibition mechanism of GSK3β from molecular dynamics simulation. Chem Biol Drug Des 83:721–730CrossRefGoogle Scholar
  40. 40.
    Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003) Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333:393–407CrossRefGoogle Scholar
  41. 41.
    Ni D, Song K, Zhang J, Lu S (2017) Molecular dynamics simulations and dynamic network analysis reveal the allosteric unbinding of Monobody to H-Ras triggered by R135K mutation. Int J Mol Sci 18:2249CrossRefGoogle Scholar
  42. 42.
    Ni D, Liu D, Zhang J, Lu S (2018) Computational insights into the interactions between calmodulin and the c/nSH2 domains of p85α regulatory subunit of PI3Kα: implication for PI3Kα activation by calmodulin. Int J Mol Sci 19:151CrossRefGoogle Scholar
  43. 43.
    Mou L, Cui T, Liu W, Zhang H, Cai Z, Lu S, Gao G (2017) Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation. Chem Biol Drug Des 89:723–731CrossRefGoogle Scholar
  44. 44.
    Ji M, Zheng G, Li X, Zhang Z, Jv G, Wang X, Wang J (2017) Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25. J Mol Model 23:183CrossRefGoogle Scholar
  45. 45.
    Jha P, Chaturvedi S, Swastika PS, Jain N, Mishra AK (2018) Improvising 5-HT7R homology model for design of high affinity ligands: model validation with docking, embrace minimization, MM-GBSA, and molecular dynamic simulations. J Biomol Struct Dyn 36:2475–2494CrossRefGoogle Scholar
  46. 46.
    Mohammadi T, Ghayeb Y (2018) Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: a computational study by multiple molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 36:126–138CrossRefGoogle Scholar
  47. 47.
    Yan L, Zhang L, Zhang Y, Qiao X, Pan J, Liu H, Lu S, Xiang B, Lu T, Yuan H (2018) Insight into the key features for ligand binding in Y1230 mutated c-met kinase domain by molecular dynamics simulations. J Biomol Struct Dyn 36:2015–2031CrossRefGoogle Scholar
  48. 48.
    Schmidtke P, Le Guilloux V, Maupetit J, Tufféry P (2010) Fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res 38:582–589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedics, Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina
  2. 2.Department of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Shanghai Concord Medical Cancer CenterShanghaiChina
  4. 4.Department of Orthopedics, Changhai HospitalNaval Military Medical UniversityShanghaiChina

Personalised recommendations