Functionalization of silicene and silicane with benzaldehyde

  • Rubí Zarmiento-García
  • Jonathan Guerrero-SánchezEmail author
  • Noboru Takeuchi
Original Paper


Organic functionalization of nanomaterials offers exceptional flexibility in materials design, and applications in molecular sensors and molecular electronics are expected. However, more studies should be conducted to understand the interaction between nanomaterials and organic molecules. In this work, we studied the functionalization of silicene and silicane with benzaldehyde, performing nudged elastic band calculations within density functional theory. We calculated the structural changes of the adsorption process, electronic properties of the main states, and the energetics. In silicene, the adsorption of benzaldehyde on the top site was found to be the most stable, with an adsorption energy of −0.55 eV. For silicane, the functionalization proceeds through a self-propagating reaction on a highly reactive dangling bond generated by a hydrogen atom vacancy. Benzaldehyde adsorbed on this site depicts an adsorption energy of −1.39 eV, which is larger than in bare silicene. Upon attaching, the double C=O bond breaks down turning the molecule into a highly reactive radical, which in this case, abstracts a neighboring H atom of the sheet. This process is highly achievable since the energy barrier to abstract the H atoms is 0.81 eV, whereas the one needed to desorb the molecule is 1.39 eV. After H abstraction, a new dangling bond is generated at the substrate, making a chain reaction possible to potentially form benzaldehyde monolayers. Organic functionalization is an excellent tool to engineer properties of 2D systems, and having a deeper understanding of the adsorption processes is the first step toward the development of new generation devices.

Graphical abstract

Benzaldehyde adsorbed on silicene and silicane


Silicene Silicane Benzaldehyde Adsorption process Energy barrier Dangling bond Radical-initiated reaction 



We thank DGAPA-UNAM project IN101019, and Conacyt grant A1-S-9070 of the Call of Proposals for Basic Scientific Research 2017−2018 for partial financial support. N.T. thanks DGAPA-UNAM for a scholarship at the University of California, Riverside. Calculations were performed in the DGCTIC-UNAM Supercomputing Center, project LANCAD-UNAM-DGTIC-051. We thank A. Rodriguez Guerrero for computational support.


  1. 1.
    Voon LCLY, Guzmán-Verri GG (2014) Is silicene the next graphene? MRS Bull 39:366–373CrossRefGoogle Scholar
  2. 2.
    Kara A, Enriquez H, Seitsonen AP et al (2012) A review on silicene—new candidate for electronics. Surf Sci Rep 67:1–18CrossRefGoogle Scholar
  3. 3.
    Jose D, Datta A (2013) Structures and chemical properties of silicene: unlike graphene. Acc Chem Res 47:593–602CrossRefGoogle Scholar
  4. 4.
    Guzmán-Verri GG, Voon LCLY (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:75131CrossRefGoogle Scholar
  5. 5.
    Balendhran S, Walia S, Nili H et al (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640–652Google Scholar
  6. 6.
    Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent experimental and theoretical investigations. J Phys Condens Matter 27:253002CrossRefGoogle Scholar
  7. 7.
    Cahangirov S, Topsakal M, Akturk E et al (2008) Two and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804. CrossRefGoogle Scholar
  8. 8.
    Houssa M, Pourtois G, Afanas’ ev VV, Stesmans A (2010) Can silicon behave like graphene? A first-principles study. Appl Phys Lett 97:112106CrossRefGoogle Scholar
  9. 9.
    Ezawa M (2012) Valley-polarized metals and quantum anomalous hall effect in silicene. Phys Rev Lett 109:55502CrossRefGoogle Scholar
  10. 10.
    Matthes L, Pulci O, Bechstedt F (2014) Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J Phys 16:105007CrossRefGoogle Scholar
  11. 11.
    Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501CrossRefGoogle Scholar
  12. 12.
    Feng B, Ding Z, Meng S et al (2012) Evidence of silicene in honeycomb structures of silicon on ag (111). Nano Lett 12:3507–3511CrossRefGoogle Scholar
  13. 13.
    Chiappe D, Grazianetti C, Tallarida G et al (2012) Local electronic properties of corrugated silicene phases. Adv Mater 24:5088–5093CrossRefGoogle Scholar
  14. 14.
    Fleurence A, Friedlein R, Ozaki T et al (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501CrossRefGoogle Scholar
  15. 15.
    Meng L, Wang Y, Zhang L et al (2013) Buckled silicene formation on Ir (111). Nano Lett 13:685–690CrossRefGoogle Scholar
  16. 16.
    Peng Q, Dearden AK, Crean J et al (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1CrossRefGoogle Scholar
  17. 17.
    Zhang R, Zhang C, Ji W et al (2014) Silicane as an inert substrate of silicene: a promising candidate for FET. J Phys Chem C 118:25278–25283CrossRefGoogle Scholar
  18. 18.
    Zheng F, Zhang C (2012) The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res Lett 7:422CrossRefGoogle Scholar
  19. 19.
    Huang B, Deng H-X, Lee H et al (2014) Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X 4:21029Google Scholar
  20. 20.
    Hill JW, Kolb DK, Hill CS (2015) Chemistry for changing times. Prentice Hall, Saddle RiverGoogle Scholar
  21. 21.
    Yates JT (1998) A new opportunity in silicon-based microelectronics. Science 80(279):335–336CrossRefGoogle Scholar
  22. 22.
    Bent SF (2002) Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf Sci 500:879–903CrossRefGoogle Scholar
  23. 23.
    Nilsson A, Pettersson LGM, Norskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys 138:194702CrossRefGoogle Scholar
  25. 25.
    Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated graphene. J Phys Chem C 117:18738–18745CrossRefGoogle Scholar
  26. 26.
    Rubio-Pereda P, Takeuchi N (2015) Adsorption of organic molecules on the hydrogenated germanene: a DFT study. J Phys Chem C 119:27995–28004CrossRefGoogle Scholar
  27. 27.
    Rubio-Pereda P, Takeuchi N (2016) Surface reactivity of Ge [111] for organic functionalization by means of a radical-initiated reaction: a DFT study. Appl Surf Sci 379:14–22CrossRefGoogle Scholar
  28. 28.
    Rubio-Pereda P, Takeuchi N (2016) Van der Waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J Mol Model 22:175CrossRefGoogle Scholar
  29. 29.
    Morachis-Galindo D, Rubio-Pereda P, Takeuchi N (2017) Organic functionalization of silicane with formaldehyde and propanaldehyde. Appl Surf Sci 392:841–848CrossRefGoogle Scholar
  30. 30.
    Ventura-Macias E, Guerrero-Sánchez J, Takeuchi N (2017) Formaldehyde adsorption on graphane. Comput Theor Chem 1117:119–123CrossRefGoogle Scholar
  31. 31.
    Brühne F, Wright E (2011) Benzaldehyde. Ullmann’s Encycl Ind Chem.
  32. 32.
    Kanai Y, Takeuchi N, Car R, Selloni A (2005) Role of molecular conjugation in the surface radical reaction of aldehydes with H-Si(111): first principles study. J Phys Chem B.
  33. 33.
    Rasmussen AMH, Hammer B (2012) Adsorption, mobility, and dimerization of benzaldehyde on Pt(111). J Chem Phys.
  34. 34.
    Benz L, Haubrich J, Jensen SC, Friend CM (2011) Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110). ACS Nano.
  35. 35.
    Akdim B, Kim SN, Naik RR et al (2009) Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations. Nanotechnology.
  36. 36.
    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens matter 21:395502CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  38. 38.
    Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227CrossRefGoogle Scholar
  39. 39.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  40. 40.
    Caspersen KJ, Carter EA (2005) Finding transition states for crystalline solid-solid phase transformations. Proc Natl Acad Sci.
  41. 41.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  42. 42.
    Şahin H, Ataca C, Ciraci S (2010) Electronic and magnetic properties of graphane nanoribbons. Phys Rev B 81:205417CrossRefGoogle Scholar
  43. 43.
    Osborn TH, Farajian AA, Pupysheva OV et al (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett.
  44. 44.
    Møller M, Jarvis SP, Gu�rinet L et al (2017) Automated extraction of single H atoms with STM: tip state dependency. Nanotechnology 28.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations