Computational study on acetamiprid-molecular imprinted polymer

  • Camilla F. Silva
  • Keyller B. Borges
  • Clebio S. NascimentoJrEmail author
Original Paper


In the present work we investigate, through DFT calculations, the mechanism of formation of a molecular imprinted polymer for the acetamiprid (ACT) insecticide, using four different functional monomers, four molar ratios attempts, and considering eight distinct solvents. As the main result we obtain the following theoretical protocol for the MIP synthesis: methacrylic acid (MMA) as functional monomer, 1:4 M ratio, i.e., one ACT to four MMAs, and chloroform as solvent. This DFT calculated condition shows more favorable energies for the formed complexes. We consider this work quite relevant since it can be used by experimentalists in order to reach an efficient MIP synthesis for ACT, avoiding wasted time and laboratory resources.

Graphical abstract

Best MIP Synthesis Protocol for Acetamiprid


DFT Theoretical calculations Acetamiprid Molecularly imprinted polymer 



The authors would like to thank the financial support of Brazilian funding agencies FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). This work is also part of the project involving the Rede Mineira de Química (RQ-MG) supported by FAPEMIG.

Supplementary material

894_2019_3990_MOESM1_ESM.docx (117 kb)
ESM 1 (DOCX 116 kb)


  1. 1.
    Hyotylainen T (2009). Anal Bioanal Chem 394:743CrossRefGoogle Scholar
  2. 2.
    Tabandeh M et al (2012). J Chromatogr B 24:898Google Scholar
  3. 3.
    Wan W et al (2013). Angew Chem Int Ed 52:7023CrossRefGoogle Scholar
  4. 4.
    Lu CH (2012). Biosens Bioelectron 31:439CrossRefGoogle Scholar
  5. 5.
    Urraca JL (2011). J Am Chem Soc 133:9220CrossRefGoogle Scholar
  6. 6.
    Kulsing C et al (2014). J Chromatogr A 1354:85CrossRefGoogle Scholar
  7. 7.
    Gao B et al (2018). Int J Polym Mater Polym Biomater 67:517CrossRefGoogle Scholar
  8. 8.
    Canfarotta F et al (2016). Nat Protoc 11:443CrossRefGoogle Scholar
  9. 9.
    Poma A et al (2010). Trends Biotechnol 28:629CrossRefGoogle Scholar
  10. 10.
    Storer CS et al (2018). Sensors 18:531CrossRefGoogle Scholar
  11. 11.
    Zhou J et al (2014). Biosens Bioelectron 54:199CrossRefGoogle Scholar
  12. 12.
    Kurczewska J et al (2017). Mater Lett 201:46CrossRefGoogle Scholar
  13. 13.
    Piletska EV et al (2015). Analyst 140:3113CrossRefGoogle Scholar
  14. 14.
    Subrahmanyan S, Piletsky SA (2009) Computational design of molecularly imprinted polymers. Springer, New YorkGoogle Scholar
  15. 15.
    Levi L et al (2011). J Mol Recognit 24:883CrossRefGoogle Scholar
  16. 16.
    Nicholls IA et al (2009). Biosens Bioelectron 25:543CrossRefGoogle Scholar
  17. 17.
    Cowen T et al (2016). Anal Chim Acta 936:62CrossRefGoogle Scholar
  18. 18.
    De Barros LA et al (2014). J Braz Chem Soc 27:2300Google Scholar
  19. 19.
    Ahmadi F et al (2014). J Chromatogr A 1338:9CrossRefGoogle Scholar
  20. 20.
    Fernandes LS et al (2015). Eur Polym J 71:364CrossRefGoogle Scholar
  21. 21.
    Tadi KK et al (2015). RSC Adv 5:99115CrossRefGoogle Scholar
  22. 22.
    Nezhadali A et al (2016). Talanta 146:525CrossRefGoogle Scholar
  23. 23.
    Fonseca MC et al (2016). Chem Phys Lett 645:174CrossRefGoogle Scholar
  24. 24.
    Silva CF et al (2018). Analyst 143:141CrossRefGoogle Scholar
  25. 25.
    Goulson D (2013). J Appl Ecol 50:977CrossRefGoogle Scholar
  26. 26.
    Karim K et al (2005). Adv Drug Deliv Rev 57:1795CrossRefGoogle Scholar
  27. 27.
    Chopra D et al (2004). Acta Cryst E 60:2374CrossRefGoogle Scholar
  28. 28.
    FRISCH MJ et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciências NaturaisUniversidade Federal de São João del-ReiSão João del-ReiBrazil

Personalised recommendations