The unusual combination of beauty and power of furoxano-1,2,3,4-tetrazine 1,3-dioxides: a theoretical study of crystal structures

  • Dmitry KhakimovEmail author
  • Victor Zelenov
  • Nikita Baraboshkin
  • Tatyana Pivina
Original Paper


The thermodynamic stability of the furoxan ring annullated with 1,2,3,4-tetrazine 1,3-dioxide cycle was studied. Crystal structure prediction based on global energy minimization in the framework of the atom–atom potential functions method was performed for isomeric furoxano-tetrazinedioxides (FuxTDOs): [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 1,5,7-trioxide (1) and [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 1,4,6-trioxide (2). The Coulomb energy was calculated with advanced point charge models fitted with high accuracy to the molecular electrostatic potentials of these molecules. The pressure and velocity of detonation of compounds 1 and 2 were estimated using the calculated enthalpy of formation and predicted molecular crystal density, which allows us to consider these compounds as high energetic materials.


High-energy-density materials Crystal engineering Prediction of crystal structures Molecular electrostatic potential Furoxan Tetrazine dioxide 



The authors thank Dr. A. Dzyabchenko for providing the copyright software packages FitMEP and PMC and for considerable assistance in their use.

Supplementary material

894_2019_3986_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)
894_2019_3986_MOESM2_ESM.cif (144 kb)
ESM 2 (CIF 144 kb)


  1. 1.
    Ovchinnikov IV, Makhova NN, Khmelґnitskii LI, Kuz′min VS, Akimova LN, Pepekin VI (1998) Dinitrodiazenofuroxane as a new energetic explosive. Dokl Chem Engl Transl 359:67–70Google Scholar
  2. 2.
    Starchenkov IB, Andrianov VG, Mishnev AF (1997) Chemistry of furazano[3,4-b]pyrazine. 1. Synthesis and thermodynamic appraisal of 4,8-dihydrodifurazano[3,4-b,e]pyrazine and its derivatives. Chem Heterocycl Compd 33:216–228CrossRefGoogle Scholar
  3. 3.
    Tselinskii IV, Mel’nikova SF, Romanova TV, Pirogov SV, Khisamutdinov GK, Mratkhuzina TA, Korolev VL, Kondyukov IZ, Abdrakhmanov IS, Smirnov SP (1997) 4H,8H-bis-(1,2,5-Oxodiazolo)[3,4-b:3′,4′-e]pyrazine and some its derivatives. Russ J Org Chem 33:1656–1665Google Scholar
  4. 4.
    Sheremetev AB, Kulagina VO, Yudina IL, Kuzmina NE (2001) Synthesis of trisfurazanylamine derivatives. Mendeleev Commun 11:112–113CrossRefGoogle Scholar
  5. 5.
    Li W, Wang K, Qi X, Jin Y, Zhang Q (2018) Construction of a thermally stable and highly energetic metal–organic framework as Lead-free primary explosives. Cryst Growth Des 18:1896–1902CrossRefGoogle Scholar
  6. 6.
    Petrie MA, Koolpe G, Malhotra R, Penwell P (2012) Office of Naval Research Grant No.: N00014–08-0894.јADA561743
  7. 7.
    Astrat’ev AA, Dashko DV, Stepanov AI (2012) 3,4-Bis(4′-nitrofurazan-3′-yl)furoxan: a melt cast powerful explosive and a valuable building block in 1,2,5-oxadiazole chemistry. Cent Eur J Energetic Mater 9:329–342Google Scholar
  8. 8.
    Stepanov AI, Astrat’ev AA, Dashko DV, Spiridonova NP, Mel’nikova SF, Tselinskii IV (2012) Synthesis of linear and cyclic compounds containing the 3,4-bis(furazan-3-yl)furoxan fragment. Russ Chem Bull Int Ed 61:1024–1040CrossRefGoogle Scholar
  9. 9.
    Zelenov VP, Voronin AA, Churakov AM, Klenov MS, Strelenko YA, Tartakovsky VA (2011) Generation of oxodiazonium ions 3. Synthesis of [1,2,5]oxadiazolo[3,4-c]cinnoline-1,5-dioxides. Russ Chem Bull Int Ed 60:2046–2050CrossRefGoogle Scholar
  10. 10.
    Klenov MS, Zelenov VP, Churakov AM, Strelenko YA, Tartakovsky VA (2011) Generation of oxodiazonium ions 2. Synthesis of benzotetrazine-1,3-dioxides from 2-(tert-butyl-NNO-azoxy)-N-nitroanilines. Russ Chem Bull Int Ed 60:2040–2045CrossRefGoogle Scholar
  11. 11.
    Tselinskii IV, Mel’nikova SF, Vergizov SN (1981) Azidofurazans in the synthesis of condensed systems. J Org Chem USSR Engl Transl 17:994Google Scholar
  12. 12.
    Gunasekaran A, Boyer JH (1993) Dense energetic compounds of C, H, N, and O atoms III 5-[4-nitro-(1,2,5)oxadiazolyl]-5H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole. Heteroat Chem 4:521–524CrossRefGoogle Scholar
  13. 13.
    Gunasekaran A, Trudell ML, Boyer JH (1994) Dense energetic compounds of C, H, N, and O atoms IV nitro- and Azidofurazan derivatives. Heteroat Chem 5:441–445CrossRefGoogle Scholar
  14. 14.
    Zelenov VP, Lobanova AA, Lyukshenko NI, Sysolyatin SV, Kalashnikov AI (2008) Behavior of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide in various media. Russ Chem Bull Int Ed 57:1384–1389CrossRefGoogle Scholar
  15. 15.
    Li X, Wang B, Li Y, Li H, Zhou C, Zhang Y, Lian P (2013) Synthesis of 5H-[1,2,3]triazolo[4,5-c][1,2,5]oxdiazole and its energetic derivatives. Chin J Energy Mater 21:717–720Google Scholar
  16. 16.
    Churakov AM, Joffe SL, Strelenko YA, Tartakovsky VA (1996) Synthesis of 4H-[1,2,3]Triazolo[4,5-c][1,2,5]oxadiazole 5-oxide and its N- and O-alkyl derivatives. Tetrahedron Lett 37:8577–8580CrossRefGoogle Scholar
  17. 17.
    Churakov AM, Joffe SL, Tartakovsky VA (1995) Synthesis of [1,2,5]Oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-Di-N-oxide. Mendeleev Commun 5:227–228CrossRefGoogle Scholar
  18. 18.
    Zelenov VP, Lobanova AA, Sysolyatin SV, Sevodina NV (2013) New syntheses of [1,2,5]Oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide. Russ J Org Chem 49:455–465CrossRefGoogle Scholar
  19. 19.
    Zharkov AS, Kalmykov PI, Burtsev YN, Kuznetsova NP, Merzhanov IA, Chukanov NV, Zakharov VV, Romanenko GV, Sidorov KA, Zarko VE (2014) Phase equilibria and structural phase transformations in the furazano[3,4-e]tetrazine-4,6-dioxide-2,4-dinitro-2,4-diazapentane system. Russ Chem Bull Int Ed 63:1785–1800CrossRefGoogle Scholar
  20. 20.
    Kiselev VG, Grytsan NP, Zarko VE, Kalmykov PI, Shandakov VA (2007) Multilevel quantum chemical calculation of the enthalpy of formation of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-dioxide. Comb Explos Shock Waves Engl Transl 43:562–566CrossRefGoogle Scholar
  21. 21.
    Pepekin VI (2010) Tendencies in the development of studies of high explosives. Russ J Phys Chem B 4:954–962CrossRefGoogle Scholar
  22. 22.
    Pepekin VI, Matyushin YN, Gubina TV (2011) Enthalpy of formation and explosive properties of 5,6-(3,4-Furazano)-1,2,3,4-Tetrazine-1,3-dioxide. Russ J Phys Chem B 5:97–100CrossRefGoogle Scholar
  23. 23.
    Zelenov VP, Fedyanin IV, Khakimov DV, Pivina TS (2017) Transformation of 3(4)-amino-4(3)-(tert-butyl-NNO-azoxy)furoxans in the annulation reactions into 1,2,3,4-tetrazine 1,3-dioxides. Russ Chem Bull Int Ed 7:1240–1249CrossRefGoogle Scholar
  24. 24.
    Voronin AA, Churakov AM, Fedyanin IV, Zelenov VP, Tartakovsky VA (2015) Synthesis of first representatives of 5-diazo-1,2,3-triazol-4-ones. Russ Chem Bull Int Ed 64:2970–2972CrossRefGoogle Scholar
  25. 25.
    Binder D, Noe CR, Nussbaumer J, Prager BC (1980) Pyrazine-1,4-dioxides fused to heterocycles; I.: the positionsselective synthesis of pyrido[2,3-d]pyrazine-1,4-dioxides. Monatshefte fuer Chemie 111:407–412CrossRefGoogle Scholar
  26. 26.
    Boyer JH, McCane DI, McCarville WJ, Tweedie AT (1953) Pyrido-2,3-furoxane. J Am Chem Soc 75:5298–5300CrossRefGoogle Scholar
  27. 27.
    Chmovzh TN, Konstantinova LS, Struchkova MI, Rakitin OA (2015) A short and safe method for the synthesis of [1,2,5]oxadiazolo[3,4-c]pyridine. Chem Heterocycl Compd 51:203–204 [Khim Geterotsikl Soedin 51:203–204 (Russ)]CrossRefGoogle Scholar
  28. 28.
    Yoneda F, Sakuma I (1973) Syntheses and properties of 4,6-dimelhyl[1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7(4H,6H)dione 1-oxide. J Heterocyclic Chem 10:993–996CrossRefGoogle Scholar
  29. 29.
    Boulton AJ, Middleton D (1974) Furazans and furazan oxides. V. Tropono[4,5-c]-, thieno[2,3-c]-, and biphenyleno[2,3-c]furazan oxides. J Org Chem 39:2956–2962CrossRefGoogle Scholar
  30. 30.
    Paulmier C (1975) Diazotation d’amino-3-tiophenes et selenophenes. Premiere synthese de thieno- et selenolo[3,2-c]isoxazoles. Compt Rend C 281:317–319Google Scholar
  31. 31.
    Marx M, Marti F, Reisdorff J, Sandmeier R, Clark S (1977) A stereospecific total synthesis of (±)-biotin. J Am Chem Soc 99:6754–6756CrossRefGoogle Scholar
  32. 32.
    Khmel′nitskii LI, Novikov SS, Godovikova TI (1996) Chemistry of furoxanes. Reactions and application, 2nd edn. Nauka, Moscow (in Russian)Google Scholar
  33. 33.
    Baryshnikova EL, Kulikov AS, Ovchinnikov IV, Solomentsev VV, Makhova NN (2001) The base-induced cascade rearrangement of 4-acetylamino-3-arylazo-1,2,5-oxadiazole 2-oxides (furoxans) into 4-acetylamino-2-aryl-5-nitro-2H-1,2,3-triazoles. Mendeleev Commun 11:230–232CrossRefGoogle Scholar
  34. 34.
    Molotov SI, Kulikov AS, Strelenko YA, Makhova NN, Lyssenko KA (2003) Synthesis and cascade rearrangement of 3-arylazo-4-(3-ethoxycarbonylureido)furoxans. Russ Chem Bull Int Ed 52:1829–1834CrossRefGoogle Scholar
  35. 35.
    Zelenov VP, Voronin AA, Churakov AM, Strelenko YA, Struchkova MI, Tartakovsky VA (2013) Amino(tert-butyl-NNO-azoxy)furoxans: synthesis, isomerization, and rearrangement of N-acetyl derivatives. Russ Chem Bull Int Ed 62:117–122CrossRefGoogle Scholar
  36. 36.
    Ovchinnikov IV, Lyssenko KA, Makhova NN (2009) An unexpected transformation of 3,4-bis(isocyanato)furoxan into 3,3-bi(1,2,4-oxadiazol-5-one). Mendeleev Commun 19:144–146CrossRefGoogle Scholar
  37. 37.
    Wang T, Zhang T, Xu L, Wu X, Gong X, Xia M (2014) Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β). J Mol Model 20:2516CrossRefGoogle Scholar
  38. 38.
    Shechter H (2004) Syntheses of high energy 1,2,3,4-Tetrazine 1,3-di-N-oxides and pentazine poly-N-oxides. AFRL-SR-AR-TR-05-0032Google Scholar
  39. 39.
    Shechter H, Venugopal M, Srinivasulu D (2006) Syntheses of 1,2,3,4-tetrazine di-N-oxides, pentazole derivatives, pentazine poly-N-oxides, and nitroacetylenes. Ohio State University Research Foundations. AFRL-SR-AR-TR-06-0088Google Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  41. 41.
    Makhova NN, Ovchinnikov IV, Kulikov AS, Khakimov DV, Molchanova MS, Pivina TS (2012) Diaminofuroxan: synthetic approaches and computer-aided study of thermodynamic stability. Propell Explos Pyrotech 37:549–557CrossRefGoogle Scholar
  42. 42.
    Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974) Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78:1595–1620CrossRefGoogle Scholar
  43. 43.
    Dzyabchenko AV (2008) A multipole approximation of the electrostatic potential of molecules. Russ J Phys Chem A 82:758–766CrossRefGoogle Scholar
  44. 44.
    Dzyabchenko AV (2008) From molecule to solid: the prediction of organic crystal structures. Russ J Phys Chem A 82:1663–1671CrossRefGoogle Scholar
  45. 45.
    Calleri M, Ranghino G, Ugliengo P, Viterbo D (1986) Structural and molecular-orbital study of the furoxan ring. Structures of 3-phenylfuroxan and 4-phenylfuroxan and comparison with related structures. Acta Crystallogr Sec B 42:84–90CrossRefGoogle Scholar
  46. 46.
    Miao YL, Zhang TL, Qiao XJ, Zhang JG, Yu KB (2004) Preparation, crystal structure and thermal decomposition mechanisms of 4,6-dinitrobenzofuroxan. Chin J Org Chem 24:205–209Google Scholar
  47. 47.
    Cady HH, Larson AC, Cromer DT (1966) The crystal structure of benzotrifuroxan (hexanitrosobenzene). Acta Crystallogr Sec B 20:336–341Google Scholar
  48. 48.
    Sayle R, Milner-White EJ (1995) RasMol: biomolecular graphics for all. Trends in Biochemical Science (TIBS) 20:374CrossRefGoogle Scholar
  49. 49.
    Allen FH, Taylor R (2004) Research application of the Cambridge structural database (CSD). Chem Soc Rev 33:463–475CrossRefGoogle Scholar
  50. 50.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  51. 51.
    Ochterski JW, Petersson GA, Montgomery JJA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598–2619CrossRefGoogle Scholar
  52. 52.
    Montgomery JJA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542CrossRefGoogle Scholar
  53. 53.
    Klapötke TM (2012) Chemistry of high-energy materials, 2nd edn. de Gruyter, BerlinCrossRefGoogle Scholar
  54. 54.
    Jorgensen KR, Oyedepo GA, Wilson AK (2011) Highly energetic nitrogen species: reliable energetics via the correlation consistent composite approach (ccCA). J Hazard Mater 186:583–589CrossRefGoogle Scholar
  55. 55.
    Xue C, Sun J, Kang B, Liu Y, Liu X, Song G, Xue Q (2010) The b-g-phase transition and thermal expansion of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Propellants Explos Pyrotech 35:333–338CrossRefGoogle Scholar
  56. 56.
    Kamlet M, Jacobs S (1968) Chemistry of detonation I. A simple method for calculations detonations properties of C-H-N-O explosives. J Chem Phys 48:23–35CrossRefGoogle Scholar
  57. 57.
    Pepekin VI (2011) Tendencies in the development of studies of high explosives. Russ J Phys Chem B 5:41–44CrossRefGoogle Scholar
  58. 58.
    Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262CrossRefGoogle Scholar
  59. 59.
    Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech 41:414–425CrossRefGoogle Scholar
  60. 60.
    Teselkin VA (2009) Mechanical sensitivity of Furazano-1,2,3,4-tetrazine-1,3-dioxide. Combus Explos Shock Waves 45:632–633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ND Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations