Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study

  • S. Haghighi
  • R. AnsariEmail author
  • S. Ajori
Original Paper


The average pull-out force and interaction energy of polyethylene (PE) cross-linked functionalized carbon nanotubes (cfCNTs) embedded in polymer matrices (PE-cfCNTs@polymers) was studied using molecular dynamics (MD) simulations. Accordingly, the pull-out process of PE-cfCNTs from inside polymer matrices, i.e., Aramid and PE, was performed under displacement control. The results obtained were compared with those of pure carbon nanotube (CNT) incorporated into polymer matrices (pure CNT@polymers). The influence on the pull-out force and interaction energy between the CNT and polymer of the structure of polymer matrices, the weight percentage and two types of distribution patterns of cross-linked PE chains, namely mapped and wrapped, was investigated. The results indicate that the structure of the polymers and distribution patterns of cross-linked PE chains strongly affect important parameters related to interfacial properties. The average pull-out force of mapped and wrapped PE-cfCNTs@polymers increases as the weight of attached PE chains on the CNT surface increases. The effect of wrapped structures on increasing the pull-out force is greater than that of the mapped configurations. Also, the PE-cfCNTs@polymers show higher average pull-out forces than those of their pure counterparts. As the CNT pulls out from the polymer matrix, an approximately linear reduction in the absolute value of interaction energy with the pull-out displacement is observed. However, this trend is changed to some extent by imposing instability through the wrapped PE-cfCNTs.


Carbon nanotube Functionalization Pull-out Molecular dynamics simulations 



  1. 1.
    Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Comput Mater Sci 31(3–4):225–236CrossRefGoogle Scholar
  2. 2.
    Hernandez E, Goze C, Bernier P, Rubio A (1998) Phys Rev Lett 80(20):4502CrossRefGoogle Scholar
  3. 3.
    Schadler LS, Giannaris SA, Ajayan PM (1998) Appl Phys Lett 73(26):3842–3844CrossRefGoogle Scholar
  4. 4.
    Hone J, Whitney M, Piskoti C, Zettl A (1999) Phys Rev B 59(4):R2514CrossRefGoogle Scholar
  5. 5.
    Rahmat M, Hubert P (2011) Compos Sci Technol 72(1):72–84CrossRefGoogle Scholar
  6. 6.
    Meguid SA, Al Jahwari F (2014) Acta Mech 225(4–5):1267–1275CrossRefGoogle Scholar
  7. 7.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76(20):2868–2870CrossRefGoogle Scholar
  8. 8.
    Barber AH, Cohen SR, Wagner HD (2003) Appl Phys Lett 82(23):4140–4142CrossRefGoogle Scholar
  9. 9.
    Bhuiyan MA, Pucha RV, Worthy J, Karevan M, Kalaitzidou K (2013) Compos Struct 95:80–87CrossRefGoogle Scholar
  10. 10.
    Liu YJ, Chen XL (2003) Mech Mater 35(1–2):69–81CrossRefGoogle Scholar
  11. 11.
    Ansari R, Ajori S, Rouhi S (2015) Superlattice Microst 77:54–63CrossRefGoogle Scholar
  12. 12.
    Thostenson ET, Chou TW (2002) J Phys D Appl Phys 35(16):L77CrossRefGoogle Scholar
  13. 13.
    Al-Ostaz A, Pal G, Mantena PR, Cheng A (2008) J Mater Sci 43(1):164–173CrossRefGoogle Scholar
  14. 14.
    Mohammadpour E, Awang M, Kakooei S, Akil HM (2014) Mater Des 58:36–42CrossRefGoogle Scholar
  15. 15.
    Balasubramanian K, Burghard M (2005) Small 1(2):180–192CrossRefGoogle Scholar
  16. 16.
    Frankland SJ, Caglar A, Brenner DW, Griebel M (2002) J Phys Chem B 106(12):3046–3048CrossRefGoogle Scholar
  17. 17.
    Zheng Q, Xue Q, Yan K, Gao X, Li Q, Hao L (2008) Polymer 49(3):800–808CrossRefGoogle Scholar
  18. 18.
    Liu F, Hu N, Ning H, Atobe S, Yan C, Liu Y, Wu L, Liu X, Fu S, Xu C, Li Y (2017) Carbon 115:694–700CrossRefGoogle Scholar
  19. 19.
    Ansari R, Ajori S, Rouhi S (2015) Appl Surf Sci 332:640–647CrossRefGoogle Scholar
  20. 20.
    Ajori S, Ansari R, Darvizeh M (2015) Phys B Condens Matter 462:8–14CrossRefGoogle Scholar
  21. 21.
    Boroushak SH, Ansari R, Ajori S (2018) Diam Relat Mater 86:173–178CrossRefGoogle Scholar
  22. 22.
    Zheng Q, Xia D, Xue Q, Yan K, Gao X, Li Q (2009) Appl Surf Sci 255(6):3534–3543CrossRefGoogle Scholar
  23. 23.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72(2):188–190CrossRefGoogle Scholar
  24. 24.
    Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Appl Phys Lett 81(20):3873–3875CrossRefGoogle Scholar
  25. 25.
    Lordi V, Yao N (2000) J Mater Res 15(12):2770–2779CrossRefGoogle Scholar
  26. 26.
    Ang KK, Ahmed KS (2013) Compos Part B 50:7–14CrossRefGoogle Scholar
  27. 27.
    Xiong QL, Meguid SA (2015) Eur Polym J 69:1–5CrossRefGoogle Scholar
  28. 28.
    Wernik JM, Cornwell-Mott BJ, Meguid SA (2012) Int J Solids Struct 49(13):1852–1863CrossRefGoogle Scholar
  29. 29.
    Meguid SA, Wernik JM, Cheng ZQ (2010) Int J Solids Struct 47(13):1723–1736CrossRefGoogle Scholar
  30. 30.
    Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Macromolecules 41(20):7536–7542CrossRefGoogle Scholar
  31. 31.
    Wernik JM, Meguid SA (2014) Int J Solids Struct 51(14):2575–2589CrossRefGoogle Scholar
  32. 32.
    Han Y, Elliott J (2007) Comput Mater Sci 39(2):315–323CrossRefGoogle Scholar
  33. 33.
    Chowdhury SC, Okabe T (2007) Compos A Appl Sci Manuf 38(3):747–754CrossRefGoogle Scholar
  34. 34.
    Li Y, Liu Y, Peng X, Yan C, Liu S, Hu N (2011) Comput Mater Sci 50(6):1854–1860CrossRefGoogle Scholar
  35. 35.
    Frankland SJ, Harik VM (2002) Analysis of carbon nanotube pull-out from a polymer matrix. MRS Online Proceedings Library Archive 733Google Scholar
  36. 36.
    Liao K, Li S (2001) Appl Phys Lett 79(25):4225–4227CrossRefGoogle Scholar
  37. 37.
    Chawla R, Sharma S (2017) Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol 144:169–177CrossRefGoogle Scholar
  38. 38.
    Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15):5429–5440CrossRefGoogle Scholar
  39. 39.
    Plimpton S (1995) J Comput Phys 117(1):1–9CrossRefGoogle Scholar
  40. 40.
    Grindon C, Harris S, Evans T, Novik K, Coveney P, Laughton C (2004) Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos Trans R Soc London A Math Phys Eng Sci 362(1820):1373–1386CrossRefGoogle Scholar
  41. 41.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179–5197CrossRefGoogle Scholar
  42. 42.
    Ajori S, Ansari R, Darvizeh M (2016) J Mol Model 22(3):62CrossRefGoogle Scholar
  43. 43.
    Hoover WG (1985) Phys Rev A 31(3):1695CrossRefGoogle Scholar
  44. 44.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106(3):765–784CrossRefGoogle Scholar
  45. 45.
    Lv C, Xue Q, Xia D, Ma M (2012) Appl Surf Sci 258(6):2077–2082CrossRefGoogle Scholar
  46. 46.
    Cao K, Siepermann CP, Yang M, Waas AM, Kotov NA, Thouless MD, Arruda EM (2013) Adv Funct Mater 23(16):2072–2080CrossRefGoogle Scholar
  47. 47.
    Hillermeier K (1984) Text Res J 54(9):575–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran
  2. 2.Department of Mechanical EngineeringUniversity of GuilanRashtIran
  3. 3.Department of Mechanical EngineeringUniversity of MaraghehMaraghehIran

Personalised recommendations