Advertisement

A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3

  • Qiang Wang
  • Quanyu Wang
  • Mingying Zhang
  • Bo Han
  • Chenggang ZhouEmail author
  • Yanling Chen
  • Guobin LvEmail author
Original Paper
  • 53 Downloads

Abstract

Na3V2(PO4)3 (NVP) is one of the most promising candidates for use as cathodes in room-temperature sodium ion batteries owing to its high structural stability and rapid Na+ transportation kinetics. The cationic doping of foreign ions at Na or V sites in the NVP lattice has proven to be an effective approach for enhancing the electrochemical performance of NVP. In this work, we present a first-principles density functional theory investigation of the impact of polyanionic boron doping at P sites on the structural and electrochemical behavior of NVP. Our simulation results suggest that B doping considerably increases the structural stability of NVP while shrinking its lattice size to some extent. Since B donates far fewer electrons to connected O atoms, the surrounding V atoms become more positive, causing the operating voltage to increase with B content. However, the reduction in lattice size is not beneficial for the Na+ transportation kinetics. As demonstrated by a search for the transition state, a concerted ion-exchange mechanism is preferred for Na+ transportation, and increased B doping leads to a higher Na+ diffusion barrier. Improvements in electrochemical performance due to B doping see (Hu et al. Adv Sci 3(12):1600112, 2016) appear to originate mainly from the resulting increased electrical conductivity.

Keywords

Na3V2(PO4)3 Boron doping at P sites Operating voltage Na+ transportation kinetics Density functional theory 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 21773217) and Wuhan Science & Technology Project 2018010401011276. Support from the High-Performance Computing Platform, China University of Geosciences, is also gratefully acknowledged.

References

  1. 1.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958.  https://doi.org/10.1002/adfm.201200691
  2. 2.
    Li W-J, Han C, Wang W, Gebert F, Chou S-L, Liu H-K, Zhang X, Dou S-X (2017) Commercial prospects of existing cathode materials for sodium ion storage. Adv Energy Mater 7(24):1700274.  https://doi.org/10.1002/aenm.201700274
  3. 3.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721.  https://doi.org/10.1002/aenm.201200026
  4. 4.
    Wong LL, Chen H, Adams S (2017) Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys Chem Chem Phys 19(11):7506–7523.  https://doi.org/10.1039/C7CP00037E
  5. 5.
    Bui KM, Dinh VA, Okada S, Ohno T (2016) Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Phys Chem Chem Phys 18(39):27226–27231.  https://doi.org/10.1039/C6CP05164B
  6. 6.
    Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2012) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3(4):444–450.  https://doi.org/10.1002/aenm.201200803
  7. 7.
    Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3(2):156–160.  https://doi.org/10.1002/aenm.201200558
  8. 8.
    Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki J-i (2013) Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim Acta 101:59–65.  https://doi.org/10.1016/j.electacta.2012.11.038
  9. 9.
    Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y (2017) Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 29(48):1700431.  https://doi.org/10.1002/adma.201700431
  10. 10.
    Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H (2017) Phosphate framework electrode materials for sodium ion batteries. Adv Sci 4(5):1600392.  https://doi.org/10.1002/advs.201600392
  11. 11.
    Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2(23):8668–8675.  https://doi.org/10.1039/C4TA00106K
  12. 12.
    Song W, Ji X, Pan C, Zhu Y, Chen Q, Banks CE (2013) A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys Chem Chem Phys 15(34):14357–14363.  https://doi.org/10.1039/C3CP52308J
  13. 13.
    Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27(39):5895–5900.  https://doi.org/10.1002/adma.201502018
  14. 14.
    Guo J-Z, Wu X-L, Wan F, Wang J, Zhang X-H, Wang R-S (2015) A superior Na3V2(PO4)3-based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chem Eur J 21(48):17371–17378.  https://doi.org/10.1002/chem.201502583
  15. 15.
    Rui X, Sun W, Wu C, Yu Y, Yan Q (2015) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27(42):6670–6676.  https://doi.org/10.1002/adma.201502864
  16. 16.
    Zhang W, Liu Y, Chen C, Li Z, Huang Y, Hu X (2015) Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 11(31):3822–3829.  https://doi.org/10.1002/smll.201500783
  17. 17.
    Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6(14):1600389.  https://doi.org/10.1002/aenm.201600389
  18. 18.
    Li H, Yu X, Bai Y, Wu F, Wu C, Liu L-Y, Yang X-Q (2015) Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J Mater Chem A 3(18):9578–9586.  https://doi.org/10.1039/C5TA00277J
  19. 19.
    Lalere F, Seznec V, Courty M, David R, Chotard JN, Masquelier C (2015) Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J Mater Chem A 3(31):16198–16205.  https://doi.org/10.1039/C5TA03528G
  20. 20.
    Klee R, Lavela P, Aragón MJ, Alcántara R, Tirado JL (2016) Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries. J Power Sources 313:73–80.  https://doi.org/10.1016/j.jpowsour.2016.02.066
  21. 21.
    Aragón MJ, Lavela P, Ortiz GF, Tirado JL (2015) Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem 2(7):995–1002.  https://doi.org/10.1002/celc.201500052
  22. 22.
    Aragón MJ, Lavela P, Ortiz GF, Tirado JL (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162(2):A3077–A3083.  https://doi.org/10.1149/2.0151502jes
  23. 23.
    Lim S-J, Han D-W, Nam D-H, Hong K-S, Eom J-Y, Ryu W-H, Kwon H-S (2014) Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A 2(46):19623–19632.  https://doi.org/10.1039/C4TA03948C
  24. 24.
    Serras P, Palomares V, Alonso J, Sharma N, López del Amo JM, Kubiak P, Fdez-Gubieda ML, Rojo T (2013) Electrochemical Na extraction/insertion of Na3V2O2x(PO4)2F3–2x. Chem Mater 25(24):4917–4925.  https://doi.org/10.1021/cm403679b
  25. 25.
    Park Y-U, Seo D-H, Kim H, Kim J, Lee S, Kim B, Kang K (2014) A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x(0 ≤ x ≤ 1): combined first-principles and experimental study. Adv Funct Mater 24(29):4603–4614.  https://doi.org/10.1002/adfm.201400561
  26. 26.
    Shakoor RA, Seo D-H, Kim H, Park Y-U, Kim J, Kim S-W, Gwon H, Lee S, Kang K (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22(38):20535–20541.  https://doi.org/10.1039/C2JM33862A
  27. 27.
    Park Y-U, Seo D-H, Kim B, Hong K-P, Kim H, Lee S, Shakoor RA, Miyasaka K, Tarascon J-M, Kang K (2012) Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Sci Rep 2:704.  https://doi.org/10.1038/srep00704
  28. 28.
    Serras P, Palomares V, Goñi A, Gil de Muro I, Kubiak P, Lezama L, Rojo T (2012) High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x. J Mater Chem 22(41):22301–22308.  https://doi.org/10.1039/C2JM35293A
  29. 29.
    Park Y-U, Seo D-H, Kwon H-S, Kim B, Kim J, Kim H, Kim I, Yoo H-I, Kang K (2013) A new high-energy cathode for a Na-ion battery with ultrahigh stability. J Am Chem Soc 135(37):13870–13878.  https://doi.org/10.1021/ja406016j
  30. 30.
    Serras P, Palomares V, Goñi A, Kubiak P, Rojo T (2013) Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteries. J Power Sources 241:56–60.  https://doi.org/10.1016/j.jpowsour.2013.04.094
  31. 31.
    Hu P, Wang X, Wang T, Chen L, Ma J, Kong Q, Shi S, Cui G (2016) Boron substituted Na3V2(P1−xBxO4)3 cathode materials with enhanced performance for sodium-ion batteries. Adv Sci 3(12):1600112.  https://doi.org/10.1002/advs.201600112
  32. 32.
    Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159(9):A1393–A1397.  https://doi.org/10.1149/2.015209jes
  33. 33.
    Wang Q, Zhang M, Zhou C, Chen Y (2018) Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J Phys Chem C 122(29):16649–16654.  https://doi.org/10.1021/acs.jpcc.8b06120
  34. 34.
    Aydinol MK, Ceder G (1997) First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries. J Electrochem Soc 144(11):3832–3835.  https://doi.org/10.1149/1.1838099
  35. 35.
    Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J (2016) On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl Mater Interfaces 8(49):33619–33625.  https://doi.org/10.1021/acsami.6b11070
  36. 36.
    Mills G, Jónsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324(2):305–337.  https://doi.org/10.1016/0039-6028(94)00731-4
  37. 37.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48(17):13115–13118.  https://doi.org/10.1103/PhysRevB.48.13115
  38. 38.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50.  https://doi.org/10.1016/0927-0256(96)00008-0
  39. 39.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865
  40. 40.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953
  41. 41.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758
  42. 42.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192.  https://doi.org/10.1103/PhysRevB.13.5188
  43. 43.
    Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360.  https://doi.org/10.1016/j.commatsci.2005.04.010
  44. 44.
    Edward S, KS D, Roger S, Graeme H (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28(5):899–908.  https://doi.org/10.1002/jcc.20575
  45. 45.
    Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749.  https://doi.org/10.1038/nmat2007
  46. 46.
    Song W, Cao X, Wu Z, Chen J, Huangfu K, Wang X, Huang Y, Ji X (2014) A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys Chem Chem Phys 16(33):17681–17687.  https://doi.org/10.1039/C4CP01821D
  47. 47.
    Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A 2(15):5358–5362.  https://doi.org/10.1039/C4TA00230J
  48. 48.
    Bui KM, Dinh VA, Okada S, Ohno T (2015) Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron–Na vacancy complex diffusion. Phys Chem Chem Phys 17(45):30433–30439.  https://doi.org/10.1039/C5CP05323Dz

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of Geosciences WuhanWuhanPeople’s Republic of China
  2. 2.Network & Education Technology CenterChina University of Geosciences WuhanWuhanPeople’s Republic of China

Personalised recommendations