Skip to main content
Log in

CO2 adsorption in nitrogen-doped single-layered graphene quantum dots: a spectroscopic investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we investigate the adsorption process of CO2 in graphene quantum dots from the electronic structure and spectroscopic properties point of view. We discuss how a specific doping scheme could be employed to further enhance the adsorbing properties of the quantum dots. This is evaluated by considering the depth of the potential well, the spectroscopic constants, and the lifetime of the compound. Electronic structure calculations are carried out in the scope of the density functional theory (DFT), whereas discrete variable representation (DVR) and Dunham methodologies are employed to obtain spectroscopic constants and hence the lifetimes of the systems. Our results suggest that nitrogen-doped graphene quantum dots are promising structures as far as sensing applications of CO2 are concerned.

Adsorption mechanism of the CO2 molecule in (a) a pristine and (b) a nitrogendoped Graphene Quantum Dot

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ren W, Cheng H (2014) . Nat Nanotechnol 9(10):726

    Article  CAS  Google Scholar 

  2. da Cunha WF, Ribeiro LA Jr, Fonseca ALDA, Gargano R, e Silva GM (2014) . J Phys Chem C 118(41):23451

    Article  CAS  Google Scholar 

  3. de Oliveira Neto PH, Van Voorhis T (2018) . Carbon 132:352

    Article  Google Scholar 

  4. Paura ENC, da Cunha WF, de Oliveira Neto PH, e Silva GM, Martins JB, Gargano R (2013) . J Phys Chem A 117(13):2854

    Article  CAS  Google Scholar 

  5. Manzoli A, Steffens C, Paschoalin RT, Correa AA, Alves WF, Leite FL, Herrmann PS (2011) . Sensors 11(6):6425

    Article  CAS  Google Scholar 

  6. Raeyani D, Shojaei S, Kandjani SA, Wlodarski W (2016) . Procedia Eng 168:1312

    Article  CAS  Google Scholar 

  7. Lin YC, Lin CY, Chiu PW (2010) . Appl Phys Lett 96(13):133110

    Article  Google Scholar 

  8. Liu H, Liu Y, Zhu D (2011) . J Mater Chem 21(10):3335

    Article  CAS  Google Scholar 

  9. Ma L, Hu H, Zhu L, Wang J (2011) . J Phys Chem C 115(14):6195

    Article  CAS  Google Scholar 

  10. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) . Science 323(5915):760

    Article  CAS  Google Scholar 

  11. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2011) . J Am Chem Soc 134(1):15

    Article  Google Scholar 

  12. Wolfgang R (1970) . Acc Chem Res 3(2):48

    Article  CAS  Google Scholar 

  13. Pitsevich G, Malevich A (2016) . J Appl Spectrosc 82(6):893

    Article  CAS  Google Scholar 

  14. Light J, Hamilton I, Lill J (1985) . J Chem Phys 82(3):1400

    Article  CAS  Google Scholar 

  15. Dunham J (1932) . Phys Rev 41(6):721

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  17. Maniero AM, Acioli PH (2005) . Int J Quantum Chem 103(5):711

    Article  CAS  Google Scholar 

  18. Powell M (1965) . Comput J 7(4):303

    Article  Google Scholar 

  19. da Cunha WF, de Oliveira RM, Roncaratti LF, Martins JB, e Silva GM, R Gargano (2014) . J Mol Model 20(12):2498

    Article  Google Scholar 

  20. Slater N (1939) .. In: Mathematical proceedings of the Cambridge Philosophical Society, vol 35, vol 35. Cambridge University Press, Cambridge, pp 56–69

Download references

Acknowledgements

The authors acknowledge the financial support from Brazilian agencies CNPq and FAP-DF. P.H.O.N. and W.F.C. also acknowledge the financial support from FAP-DF grants 0193.001662/2017, and 0193.001694/2017 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiliam F. da Cunha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Neto, P.H., Rodrigues, J.P.C.C., de Sousa, L.E. et al. CO2 adsorption in nitrogen-doped single-layered graphene quantum dots: a spectroscopic investigation. J Mol Model 25, 66 (2019). https://doi.org/10.1007/s00894-019-3951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3951-5

Keywords

Navigation