Advertisement

State-specific electrostatic potential descriptors for estimating solvatochromic effects

  • Lulu Wang
  • Shiwei YinEmail author
Original Paper

Abstract

The Lippert-Mataga equation is used widely to describe the solvatochromic effects of fluorescent molecules through the evaluation of solute–solvent interactions on the basis of the point-dipole model. A large dipole deviation of molecules in the ground-state and the lowest excited-state is a basic requirement for the design of a polarity-sensitive fluorescent probe. Some recently synthesized probes with center-symmetry have near zero dipole deviation while undergoing notably solvatochromic behaviors. Thus, it is necessary to find a new method beyond the Lippert-Mataga model to qualitatively estimate the molecular solvent shifts. To this end, a state-specific descriptor (SSD) based on molecular surface electrostatic potentials (ESP) is proposed to explain the solvatochromic behaviors of the well-studied coumarin C153 and center-symmetric DCB-1d. In contrast to the experimental solvent shifts and state-specific TD-DFT calculations, the SSD successfully explains the solvatochromic effect of C153 and DCB-1d molecules. In addition, the SSD was tested by using eight selected polarity-sensitive fluorescent molecules. The SSD was found to provide a good linear relationship with solvatochromism.

Keywords

Solvatochromism State-specific descriptor Non-equilibrium implicit solvation model Polarity-sensitive probe 

Notes

Acknowledgments

The authors thank Dr. Yun Wang helpful discussions. This work is supported by the National Key R&D program of China (Grant No. 2017YFB0203404), National Natural Science Foundation of China (21173138), and Shaanxi Innovative Team of Key Science and Technology (2103KCT-17).

Supplementary material

894_2019_3948_MOESM1_ESM.docx (515 kb)
ESM 1 (DOCX 514 kb)

References

  1. 1.
    Klymchenko AS (2017) Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc Chem Res 50(2):366–375.  https://doi.org/10.1021/acs.accounts.6b00517 CrossRefPubMedGoogle Scholar
  2. 2.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358CrossRefGoogle Scholar
  3. 3.
    Xu T, Wang W, Yin S (2018) Electrostatic polarization energies of charge carriers in organic molecular crystals: a comparative study with explicit state-specific atomic polarizability based AMOEBA force field and implicit solvent method. J Chem Theory Comput 14(7):3728–3739.  https://doi.org/10.1021/acs.jctc.8b00132 CrossRefPubMedGoogle Scholar
  4. 4.
    Xu T, Wang W, Yin S (2018) Explicit method to evaluate the external reorganization energy of charge-transfer reactions in oligoacene crystals using the state-specific polarizable force field. J Phys Chem A 122(45):8957–8964.  https://doi.org/10.1021/acs.jpca.8b08998 CrossRefPubMedGoogle Scholar
  5. 5.
    Luzhkov V, Warshel A (1991) Microscopic calculations of solvent effects on absorption spectra of conjugated molecules. J Am Chem Soc 113(12):4491–4499CrossRefGoogle Scholar
  6. 6.
    Zeng J, Hush N, Reimers J (1993) Solvent effects on molecular spectra. III. Absorption to and emission from the lowest singlet (n, π*) state of dilute pyrimidine in water. J Chem Phys 99(3):1508–1521CrossRefGoogle Scholar
  7. 7.
    Hush NS, Reimers JR (2000) Solvent effects on the electronic spectra of transition metal complexes. Chem Rev 100(2):775–786CrossRefGoogle Scholar
  8. 8.
    McRae E (1957) Theory of solvent effects on molecular electronic spectra. Frequency shifts. J Phys Chem 61(5):562–572CrossRefGoogle Scholar
  9. 9.
    Amos A, Burrows B (1973) Solvent-shift effects on electronic spectra and excited-state dipole moments and polarizabilities. Adv Quantum Chem 7:289–313CrossRefGoogle Scholar
  10. 10.
    Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493.  https://doi.org/10.1021/ja01299a050 CrossRefGoogle Scholar
  11. 11.
    Lippert E (1957) Spektroskopische bestimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand. Z Elektrochem Ber Bunsenges Phys Chem 61(8):962–975Google Scholar
  12. 12.
    Zhang JN, Kang H, Li N, Zhou SM, Sun HM, Yin SW, Zhao N, Tang BZ (2016) Organic solid fluorophores regulated by subtle structure modification: color-tunable and aggregation-induced emission. Chem Sci 8:577CrossRefGoogle Scholar
  13. 13.
    Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44(S19):57–64.  https://doi.org/10.1002/qua.560440709 CrossRefGoogle Scholar
  14. 14.
    Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928.  https://doi.org/10.1080/002689797171030 CrossRefGoogle Scholar
  15. 15.
    Politzer P, Murray JS, Peralta-Inga Z (2001) Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int J Quantum Chem 85(6):676–684.  https://doi.org/10.1002/qua.1706 CrossRefGoogle Scholar
  16. 16.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691.  https://doi.org/10.1007/s00894-010-0692-x CrossRefPubMedGoogle Scholar
  17. 17.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163.  https://doi.org/10.1002/wcms.19 CrossRefGoogle Scholar
  18. 18.
    Brinck T, Murray JS, Politzer P (1992) Quantitative determination of the total local polarity (charge separation) in molecules. Mol Phys 76(3):609–617.  https://doi.org/10.1080/00268979200101561 CrossRefGoogle Scholar
  19. 19.
    Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J Phys Chem 99(48):17311–17337CrossRefGoogle Scholar
  20. 20.
    Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, OxfordCrossRefGoogle Scholar
  21. 21.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev (Washington, DC) 105(8):2999–3094.  https://doi.org/10.1021/cr9904009 CrossRefGoogle Scholar
  22. 22.
    Leach AR (2001) Molecular modelling: principles and applications. Pearson, HarlowGoogle Scholar
  23. 23.
    Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38(9):314–323CrossRefGoogle Scholar
  24. 24.
    Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125(5):054103CrossRefGoogle Scholar
  25. 25.
    Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127(7):074504CrossRefGoogle Scholar
  26. 26.
    Mewes J-M, You Z-Q, Wormit M, Kriesche T, Herbert JM, Dreuw A (2015) Experimental benchmark data and systematic evaluation of two a posteriori, polarizable-continuum corrections for vertical excitation energies in solution. J Phys Chem A 119:5446–5464CrossRefGoogle Scholar
  27. 27.
    You Z-Q, Mewes J-M, Dreuw A, Herbert JM (2015) Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models. J Chem Phys 143:204104CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  29. 29.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  30. 30.
    Vázquez ME, Blanco JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N, N-dimethylamino-2, 3-naphthalimide. J Am Chem Soc 127(4):1300–1306CrossRefGoogle Scholar
  31. 31.
    Kucherak OA, Didier P, Mély Y, Klymchenko AS (2010) Fluorene analogues of prodan with superior fluorescence brightness and solvatochromism. J Phys Chem Lett 1(3):616–620CrossRefGoogle Scholar
  32. 32.
    Holmes-Farley SR, Whitesides GM (1986) Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film. Langmuir 2(3):266–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anChina

Personalised recommendations