Influences of pressure on structural and electronic properties of four types of HMX

  • Han QinEmail author
  • Meng-Fan Shi
  • Zhi-Jie Feng
  • Peng-Fei Zhang
  • Xiang Guo
  • Xiao-Yu Chen
  • Fu-Sheng Liu
  • Bin Tang
  • Qi-Jun LiuEmail author
Original Paper


The crystal and electronic structures of four polymorphs of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from 0 to 30 GPa were investigated by using density functional theory. The obtained structural parameters based on the GGA-PBE+TS calculations are in agreement with experimental results at ambient pressure. As the pressure increases, the volumes of the four types of HMX decrease monotonically and the band gaps gradually decrease without any significant discontinuity. Moreover, the peaks of the density of states become lower and the bandwidths become broader, which indicate that the hybridizations become strong under pressure. From the results, we suggest that the impact sensitivity for HMX becomes more and more sensitive with increasing pressure.


HMX Sensitivity First-principles calculations 



This work was supported by the National Natural Science Foundation of China (Grant No. 11574254), the 12th personalized experiment project of Southwest Jiaotong University (Grant No. GX201812140), the Fundamental Research Funds for the Central Universities (Grant No. 2018GF08), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant No. D-CX201735), and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University.


  1. 1.
    Cooper PW, Kurowski SR (1996) Introduction to the technology of explosives. Wiley, New YorkGoogle Scholar
  2. 2.
    Akhaven J (1998) The chemistry of explosives. Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Cady HH, Smith LC (1961) Studies on the polymorphs of HMX, Los Alamos scientific laboratory report LAMS-2652 TID-4500. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  4. 4.
    Main P, Cobbledick RE, Small RWH (1985) Acta Cryst C41:1351Google Scholar
  5. 5.
    Mccrone WC (1950) Anal Chem 22:1225CrossRefGoogle Scholar
  6. 6.
    Goetz F, Brill TB, Ferraro JR (1978) J Phys Chem 82:1912CrossRefGoogle Scholar
  7. 7.
    Yoo CS, Cynn H (1999) J Chem Phys 111:10229CrossRefGoogle Scholar
  8. 8.
    Hooks DE, Hayes DB, Hare DE, Reisman DB, Vandersall KS, Forbes JW, Hall CA (2006) J Appl Phys 99:124901CrossRefGoogle Scholar
  9. 9.
    Hare DE, Forbes JW, Reisman DB, Dick JJ (2004) Appl Phys Lett 85:949CrossRefGoogle Scholar
  10. 10.
    Pravica M, Galley M, Kim E, Weck P, Liu Z (2010) Chem Phys Lett 500:28CrossRefGoogle Scholar
  11. 11.
    Zaug JM, Armstrong MR, Crowhurst JC, Feranti L, Swan R, Gross R, Teshlich NE, Wall M, Austin RA, Fried LE (2014) International detonation symposium #15. SciTech Connect, San FranciscoGoogle Scholar
  12. 12.
    Lewis JP, Sewell TD, Evans RB, Voth GA (2000) J Phys Chem B 104:1009CrossRefGoogle Scholar
  13. 13.
    Lewis JP (2003) Chem Phys Lett 371:588CrossRefGoogle Scholar
  14. 14.
    Cui HL, Ji GF, Chen XR, Zhu WH, Zhao F, Wen Y, Wei DQ (2009) J Phys Chem A 114:1082CrossRefGoogle Scholar
  15. 15.
    Chen J, Long Y, Liu YG, Nie FD, Sun JS (2011) Sci China Phys Mech Astron 54:831CrossRefGoogle Scholar
  16. 16.
    Zhang L, Jiang SL, Yu Y, Long Y, Zhao HY, Peng LJ, Chen J (2016) J Phys Chem B 120:11510CrossRefGoogle Scholar
  17. 17.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z Krist Cryst Mater 220:567Google Scholar
  18. 18.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  19. 19.
    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  21. 21.
    Cady HH, Larson AC, Cromer DT (1963) Acta Crystallogr 16:617CrossRefGoogle Scholar
  22. 22.
    Choi CS, Boutin HP (1970) Acta Crystallogr B Struct Crystallogr Cryst Chem 26:1235CrossRefGoogle Scholar
  23. 23.
    Cobbledick RE, Small RWH (1974) Acta Crystallogr B Struct Crystallogr Cryst Chem 30:1918CrossRefGoogle Scholar
  24. 24.
    Peng Q, Rahul G, Wang GR, Liu S, De Grimme S (2015) J Phys Chem B 119:5896CrossRefGoogle Scholar
  25. 25.
    Ge NN, Wei YK, Song ZF, Chen XR, Ji GF, Zhao F, Wei DQ (2014) J Phys Chem B 118:8691CrossRefGoogle Scholar
  26. 26.
    Lyman JL, Liau YC, Brand HV (2002) Combust Flame 130:185CrossRefGoogle Scholar
  27. 27.
    Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701CrossRefGoogle Scholar
  28. 28.
    Liu Z, Zhu W, Xiao H (2016) J Phys Chem C 120:27182CrossRefGoogle Scholar
  29. 29.
    Zhu W, Xiao H (2010) Struct Chem 21:657CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSchool of Physical Science and Technology, Southwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations