Advertisement

Study of the Wilcox torsion balance in solution for a Tröger’s base derivative with hexyl-and heptyl substituents using a combined molecular mechanics and quantum chemistry approach

  • Andreas HeßelmannEmail author
  • Federica Ferraro
Original Paper
  • 100 Downloads
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

The folding equilibrium of the Wilcox torsion balance in solution has been studied using a molecular mechanics method for sampling the conformational space and semi-empirical and density-functional quantum chemistry methods for characterizing the relative stabilities of various solute–solvent clusters extracted with the aid of the MD-quench technique from the different simulations that were performed. The role of the solvent environment has been analyzed by choosing four solvents of different polarities, namely water, acetone, tetrachloromethane, and n-hexane. In all cases, it is found that the attractive intramolecular interactions in folded conformations are strongly compensated by the increase of the solute–solvent interaction energies when the molecule unfolds. The latter can be well explained by the larger number of solvent molecules that can bind to the Wilcox molecule when in an unfolded conformation. The results of this work therefore support the experimental results of Yang et al. (Nature Chem 5:1006, 2013) that the folding free energy of the Wilcox balance is strongly reduced in solution as compared to the gas phase.

Keywords

Wilcox torsion balance Solvent Intramolecular interactions Intermolecular interactions 

Notes

Acknowledgements

Financial support of this work through the DFG (Deutsche Forschungsgemeinschaft) priority Program No. SPP1807 (“Control of London dispersion interactions in molecular chemistry”) is gratefully acknowledged.

Supplementary material

894_2019_3935_MOESM1_ESM.pdf (86 kb)
(PDF 86.1 KB)

References

  1. 1.
    Mahadevan J, Xu C, Siahaan T, Kuczera K (2002) Molecular dynamics simulations of conformational behavior of linear RGD peptidomimetics and cyclic prodrugs in aqueous and octane solutions. J Biomol Struct Dyn 19:775CrossRefGoogle Scholar
  2. 2.
    Hwang J, Dial BE, Lia P, Kozik ME, Smith MD, Shimizu KD (2015) How important are dispersion interactions to the strength of aromatic stacking interactions in solution. Chem Sci 6:4358CrossRefGoogle Scholar
  3. 3.
    Bahyana B, Wilcox CS (2007) A minimal protein folding model to measure hydrophobic and CH-Pi effects on interactions between nonpolar surfaces in water. Angew Chem Int Ed 46:6833CrossRefGoogle Scholar
  4. 4.
    Paliwal S, Geib S, Wilcox CS (1994) Molecular torsion balance for weak molecular recognition forces. Effects of ”tilted-t” edge-to-face aromatic interactions on conformational selection and solid-state structure. J Am Chem Soc 116:4497CrossRefGoogle Scholar
  5. 5.
    Kim E, Paliwal S, Craig S, Wilcox J (1998) Measurements of molecular electrostatic field effects in edge-to-face aromatic interactions and CH-π interactions with implications for protein folding and molecular recognition. J Am Chem Soc 120:11192.  https://doi.org/10.1021/ja982620u CrossRefGoogle Scholar
  6. 6.
    Yang L, Adam C, Nichol GS, Cockroft SL (2013) How much do van der Waals dispersion forces contribute to molecular recognition in solution?. Nat Chem 5:1006CrossRefGoogle Scholar
  7. 7.
    Yang L, Brazier JB, Hubbard TA, Rogers DM, Cockroft SL (2016) Can dispersion forces govern aromatic stacking in an organic solvent?. Angew Chem Int Ed 55:912CrossRefGoogle Scholar
  8. 8.
    Li F, Bravo-Rodriguez K, Phillips C, Seidel RW, Wieberneit F, Stoll R, Doltsinis NL, Sanchez-Garcia E, Sander W (2013) Conformation and dynamics of a cyclic disulfide-bridged peptide: Effects of temperature and solvent. J Phys Chem B 117:3560CrossRefGoogle Scholar
  9. 9.
    Lorenz C, Doltsinis NL (2012) Handbook of Computational Chemistry. Springer, Berlin. Chap. Molecular Dynamics Simulation: from ’Ab Initio’ to ’Coarse Grained’Google Scholar
  10. 10.
    Sherman MC, Ams MR, Jordan KD (2016) Symmetry-adapted perturbation theory energy analysis of alkyl fluorine-aromatic interactions in torsion balance systems. J Phys Chem A 120:9292.  https://doi.org/10.1021/acs.jpca.6b09193 CrossRefGoogle Scholar
  11. 11.
    Hohenstein E, Sherrill CD (2010) Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. J Chem Phys 133:014101CrossRefGoogle Scholar
  12. 12.
    Hohenstein EG, Sherrill CD, fitting Density (2010) Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of ππ interactions in linear acenes. J Chem Phys 132:184111.  https://doi.org/10.1063/1.3426316 CrossRefGoogle Scholar
  13. 13.
    Hohenstein EG, Parrish RM, Sherrill CD, Turney JM, Schaefer HF III (2011) Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA- intercalator interactions. J Chem Phys 135:174107CrossRefGoogle Scholar
  14. 14.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378.  https://doi.org/10.1021/jp810292n CrossRefGoogle Scholar
  15. 15.
    Ams MR, Fields M, Grabnic T, Janesko BG, Zeller M, Sheridan R, Shay A (2015) Unraveling the role of alkyl F on CH–π interactions and uncovering the tipping point for fluorophobicity. J Org Chem 80:7764CrossRefGoogle Scholar
  16. 16.
    Ren P, Ponder JW (2002) Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J Comput Chem 23:1497CrossRefGoogle Scholar
  17. 17.
    Ren P, Ponder JW (2004) Temperature and pressure dependence of the AMOEBA water model. J Phys Chem B 108:13427CrossRefGoogle Scholar
  18. 18.
    Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M Jr (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549CrossRefGoogle Scholar
  19. 19.
    Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder JW, Ren P (2011) Polarizable atomic multipole-based AMOEBA force field for proteins. J Chem Theory Comput 2011:4046Google Scholar
  20. 20.
    Wu JC, Chattree G, Ren P (2012) Automation of AMOEBA polarizable force field parameterization for small molecules. Theor Chem Acc 131:1138CrossRefGoogle Scholar
  21. 21.
    Ren P, Wu C, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143CrossRefGoogle Scholar
  22. 22.
    Rackers JA, Wang Z, Lu C, Laury ML, Lagardere L, Schnieders MJ, Piquemal JP, Ren P, Ponder JW (2018) Tinker 8: Software Tools for molecular design. J Chem Theory Comput 14:5273.  https://doi.org/10.1021/acs.jctc.8b00529 CrossRefGoogle Scholar
  23. 23.
    Seifert G (2007) Tight-binding density functional theory: An approximate Kohn–Sham DFT scheme. J Phys Chem A 111:5609.  https://doi.org/10.1021/jp069056r CrossRefGoogle Scholar
  24. 24.
    Koskinen P, Mäkinen V (2009) Density-functional tight-binding for beginners. Comp Mat Sci 47:237.  https://doi.org/10.1016/j.commatsci.2009.07.013 CrossRefGoogle Scholar
  25. 25.
    Elstner M, Seifert G (2014) Density functional tight binding. Phil Trans R Soc A 372:20120483CrossRefGoogle Scholar
  26. 26.
    Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, A sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678CrossRefGoogle Scholar
  27. 27.
    Gaus M, Goez A, Elstner M (2013) Parametrization and benchmark of DFTB3 for organic molecules. J Chem Theory Comput 9:338.  https://doi.org/10.1021/ct300849w CrossRefGoogle Scholar
  28. 28.
    Kubillus M, Kubar T, Gaus M, Rezac J, Elstner M (2015) Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. J Chem Theory Comput 11:332CrossRefGoogle Scholar
  29. 29.
    Gaus M, Goez A, Elstner M 3ob-3-1 Slater–Koster parameters. https://www.dftb.org/parameters/download/3ob/3ob-3-1-cc
  30. 30.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. J Chem Phys 114:5149CrossRefGoogle Scholar
  31. 31.
    Miller K (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112:8533CrossRefGoogle Scholar
  32. 32.
    Halgren T (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827.  https://doi.org/10.1021/ja00046a032 CrossRefGoogle Scholar
  33. 33.
    Maseras F, Morokuma K (1995) IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170.  https://doi.org/10.1002/jcc.540160911 CrossRefGoogle Scholar
  34. 34.
    Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian 98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct (THEOCHEM) 461:1CrossRefGoogle Scholar
  35. 35.
    Thom V, Keiji M, Ödön F, Bernhard SH, Frisch MJ (2003) Geometry optimization with QM/MM, Oniom, and other combined methods. I. Microiterations constraints. J Comput Chem 24:760CrossRefGoogle Scholar
  36. 36.
    Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678.  https://doi.org/10.1021/cr5004419 CrossRefGoogle Scholar
  37. 37.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2016) Gaussian09 Revision A.02 Gaussian Inc. Wallingford CTGoogle Scholar
  39. 39.
    Heßelmann A (2013) Assessment of a nonlocal correction scheme to semilocal density functional theory methods. J Chem Theory Comput 9:273.  https://doi.org/10.1021/ct300735g CrossRefGoogle Scholar
  40. 40.
    Heßelmann A (2018) Geometry optimisations with a nonlocal density-functional theory method based on a double Hirshfeld partitioning. J Chem Phys 044103:149.  https://doi.org/10.1063/1.5032175 Google Scholar
  41. 41.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M MOLPRO, version 2015.1, a package of ab initio programs. see http://www.molpro.net
  42. 42.
    Werner HJ, Knowles PJ, knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci 2:242CrossRefGoogle Scholar
  43. 43.
    Meitei OR, Heßelmann A (2016) Molecular energies from an incremental fragmentation method. J Chem Phys 144(8):084109.  https://doi.org/10.1063/1.4942189 CrossRefGoogle Scholar
  44. 44.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007CrossRefGoogle Scholar
  45. 45.
    Kendall R, Dunning T Jr, Harrison R (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6769.  https://doi.org/10.1063/1.462569 CrossRefGoogle Scholar
  46. 46.
    Woon D, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminium through argon. J Chem Phys 98:1358CrossRefGoogle Scholar
  47. 47.
    Stone AJ (1997) The Theory of Intermolecular Forces. Oxford University Press, LondonGoogle Scholar
  48. 48.
    Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1:1128CrossRefGoogle Scholar
  49. 49.
    Stone A GDMA 2.2.11 program. http://www-stone.ch.cam.ac.uk/pub/gdma
  50. 50.
  51. 51.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245CrossRefGoogle Scholar
  52. 52.
    Wyczalkowski MA, Vitalis A, Pappu RV (2010) New estimators for calculating solvation entropy and enthalpy and comparative assessments of their accuracy and precision. J Phys Chem B 114:8166.  https://doi.org/10.1021/jp103050u CrossRefGoogle Scholar
  53. 53.
    Bradshaw RT, Essex JW (2016) Evaluating parametrization protocols for hydration free energy calculations with the AMOEBA polarizable force field. J Chem Theory Comput 12:3871.  https://doi.org/10.1021/acs.jctc.6b00276 CrossRefGoogle Scholar
  54. 54.
    Mohamed NA, Bradshaw RT, Essex JW (2016) Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field. J Comput Chem 37:2749CrossRefGoogle Scholar
  55. 55.
    Tomasi J, Menucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999CrossRefGoogle Scholar
  56. 56.
    Albaugh A, Boateng HA, Bradshaw RT, Demerdash ON, Dziedzic J, Mao Y, Margul DT, Swails J, Zeng Q, Case DA, Eastman P, Wang LP, Essex JW, Head-Gordon M, Pande VS, Ponder JW, Shao Y, Skylaris CK, Todorov IT, Tuckerman ME, Head-Gordon T (2016) Advanced potential energy surfaces for molecular simulation. J Phys Chem B 120:9811.  https://doi.org/10.1021/acs.jpcb.6b06414 CrossRefGoogle Scholar
  57. 57.
    Collins MA, Deev V (2006) Accuracy and efficiency of electronic energies from systematic molecular fragmentation. J Chem Phys 125(10):104104.  https://doi.org/10.1063/1.2347710 CrossRefGoogle Scholar
  58. 58.
    Collins MA, Bettens RPA (2015) Energy-based molecular fragmentation methods. Chem Rev 115:5607.  https://doi.org/10.1021/cr500455b CrossRefGoogle Scholar
  59. 59.
    Deev V, Collins MA (2005) Approximate ab initio energies by systematic molecular fragmentation. J Chem Phys 122(15):154102.  https://doi.org/10.1063/1.1879792 CrossRefGoogle Scholar
  60. 60.
    Meitei OR, Heßelmann A (2017) Intramolecular interactions in sterically crowded hydrocarbon molecules. J Comput Chem 38:2500.  https://doi.org/10.1002/jcc.24908 CrossRefGoogle Scholar
  61. 61.
    Meitei OR, Heßelmann A (2018) Geometry optimisations with the incremental molecular fragmentation method. J Theor Comput Chem.  https://doi.org/10.1142/S0219633618500372
  62. 62.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553.  https://doi.org/10.1080/00268977000101561 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische ChemieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations