Structural, energetic, and vibrational properties of the homodimers of the silyl, germyl, and stannyl halides, (MH3X)2 (M = Si, Ge, Sn; X = F, Cl, Br, I)
- 41 Downloads
Abstract
A number of properties of the homodimers of the three families of molecules MH3X, where M is Si, Ge, and Sn and X is F, Cl, Br, and I are computed. The results are compared with those of a similar study of the homodimers of the methyl halides containing the same four halogen atoms, and some notable differences are observed among related sets of monomer species. The interaction energies, the primary intermolecular geometrical parameters, the changes in the intramolecular bond lengths, and the vibrational data (wavenumber shifts and dimer/monomer infrared intensity ratios) of some of the modes most closely associated with the site of interaction show, for the most part, regular variations as the central atom and the halogen atom are systematically varied. The results are interpreted in terms of the changes in the bonding properties of the monomer molecules as they undergo dimerization.
Interaction energies of the silyl, germyl and stannyl fluoride, chloride, bromide and iodide dimers
Keywords
Ab initio calculations Interaction energies Molecular structures Vibrational spectraNotes
Acknowledgments
This work is based on research supported in part by the National Research Foundation (NRF) of South Africa under grant number 2053648. The grant holder (TAF) acknowledges that opinions, findings, and conclusions or recommendations expressed in any publication generated by NRF-supported research are those of the authors and that the NRF accepts no liability in this regard. The authors also acknowledge the University of Mauritius and the University of KwaZulu-Natal for financial assistance, as well as the Centre for High Performance Computing (Cape Town) and the Hippo cluster (University of KwaZulu-Natal) for the use of computing facilities.
Supplementary material
References
- 1.Ford TA (2012) J Mol Struct 1009:16–22Google Scholar
- 2.Xie Y, Jang JH, King RB, Schaefer III HF (2003) Inorg Chem 42:5219–5230PubMedGoogle Scholar
- 3.Ramasami P, Ford TA (2016) J Mol Struct 1126:2–10Google Scholar
- 4.Dailey BP, Mays JM, Townes CH (1949) Phys Rev 76:136–137Google Scholar
- 5.Mays JM, Dailey BP (1952) J Chem Phys 20:1695–1703Google Scholar
- 6.Kewley R, McKinney PM, Robiette AG (1970) J Mol Spectrosc 34:390–398Google Scholar
- 7.Sharbaugh AH, Pritchard BD, Thomas VG, Mays JM, Dailey BP (1950) Phys Rev 79:189Google Scholar
- 8.Griffiths JE, McAfee KB (1961) Proc Chem Soc 456–460Google Scholar
- 9.Rhee KH, Wilson MK (1965) J Chem Phys 43:333–343Google Scholar
- 10.Bellama JM, Wandiga SO, Maryott AA (1971) Inorg Nucl Chem Lett 7:71–73Google Scholar
- 11.Krisher LC, Morrison JA, Watson WA (1972) J Chem Phys 57:1357–1358Google Scholar
- 12.Wolf SN, Krisher LC (1972) J Chem Phys 56:1040–1049Google Scholar
- 13.Krisher LC, Wolf SN (1973) J Chem Phys 58:396–398Google Scholar
- 14.Bellama JM, Wandiga SO, Maryott AA (1974) J Chem Soc, Faraday Trans II 70:719–726Google Scholar
- 15.Cradock S, McKean DC, MacKenzie MW (1981) J Mol Struct 74:265–276Google Scholar
- 16.Durig JR, Mohamad AB, Trowell PL, Li YS (1981) J Chem Phys 75:2147–2152Google Scholar
- 17.Cradock S, Smith JG (1983) J Mol Spectrosc 98:502–504Google Scholar
- 18.Cradock S, Smith JG (1983) J Mol Spectrosc 102:184–192Google Scholar
- 19.Krisher LC, Gsell RA, Bellama JM (1971) J Chem Phys 54:2287–2288Google Scholar
- 20.Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 54:4605–4611Google Scholar
- 21.Wolf SN, Krisher LC, Gsell RA (1971) J Chem Phys 55:2106–2114Google Scholar
- 22.Monfils A (1951) J Chem Phys 19:138–139Google Scholar
- 23.Monfils A (1953) Compt Rend 236:795Google Scholar
- 24.Andersen FA, Bak B (1954) Acta Chem Scand 8:738–743Google Scholar
- 25.Mayo DW, Opitz HE, Peake JS (1955) J Chem Phys 23:1344–1345Google Scholar
- 26.Newman C, O’Loane JK, Polo SR, Wilson MK (1956) J Chem Phys 25:855–859Google Scholar
- 27.Lord RC, Steese CM (1954) J Chem Phys 22:542–546Google Scholar
- 28.Griffiths JE, Srivastava TN, Onyszchuk M (1962) Can J Chem 40:579–589Google Scholar
- 29.Freeman DE, Rhee KH, Wilson MK (1963) J Chem Phys 39:2908–2922Google Scholar
- 30.Nakagawa NJ, Hasegawa A, Hayashi M (1982) Spectrochim Acta 38A:773–778Google Scholar
- 31.Cradock S, Bürger H, Eujen R, Schulz P (1982) Mol Phys 46:641–649Google Scholar
- 32.McKean DC, Torto I, MacKenzie MW, Morrison AR (1983) Spectrochim Acta 39A:387–398Google Scholar
- 33.Cradock S (1984) Mol Phys 51:697–714Google Scholar
- 34.Lattanzi F, di Lauro C, Henry L, Valentin A, Bürger H (1988) J Mol Spectrosc 127:83–96Google Scholar
- 35.Bürger H, Burczyk K, Eujen R, Rahner A, Cradock S (1983) J Mol Spectrosc 97:266–286Google Scholar
- 36.Bürger H, Eujen R, Litz M, Henry L, Valentin A (1988) J Mol Spectrosc 128:98–107Google Scholar
- 37.Bürger H, Schulz P, Cradock S (1985) Z Naturforsch 40a:383–385Google Scholar
- 38.Bürger H, Eujen R, Cradock S, Henry L, Valentin A (1986) J Mol Spectrosc 116:228–246Google Scholar
- 39.Bürger H, Eujen R, Rahner A, Schulz P, Drake JE, Cradock S (1983) Z Naturforsch 38a:740–748Google Scholar
- 40.Ogilvie JF, Salares VR, Newlands MJ (1978) Ber Bunsenges Phys Chem 82:105Google Scholar
- 41.Isabel RJ, Guillory WA (1971) J Chem Phys 55:1197–1205Google Scholar
- 42.Isabel RJ, Guillory WA (1972) J Chem Phys 57:1116–1123Google Scholar
- 43.Guillory WA, Isabel RJ, Smith GR (1973) J Mol Struct 19:473–491Google Scholar
- 44.Bellama JM, Gsell RA (1971) Inorg Nucl Chem Lett 7:365–368Google Scholar
- 45.Webster JR, Millard MM, Jolly WL (1971) Inorg Chem 10:879–883Google Scholar
- 46.Bürger H, Betzel M (1985) Z Naturforsch 40a:989–994Google Scholar
- 47.Betzel M, Bürger H, Rahner A (1986) Z Naturforsch 41a:1009–1014Google Scholar
- 48.Bürger H, Betzel M, Schulz P (1987) J Mol Spectrosc 121:218–235Google Scholar
- 49.Nagarajan G (1962) Bull Soc Chim Belg 71:226Google Scholar
- 50.Duncan JL (1964) Spectrochim Acta 20:1807–1814Google Scholar
- 51.Pillai MGK, Perumal A (1964) Bull Soc Chim Belg 73:641Google Scholar
- 52.Freeman DE, Wilson MK (1965) Spectrochim Acta 21:1825–1833Google Scholar
- 53.Müller A, Krebs B, Fadini A, Glemser O, Cyvin SJ, Brunvoll J, Cyvin BN, Elvebredd I, Hagen G, Vizi B (1968) Z Naturforsch 23a:1656–1660Google Scholar
- 54.Ramaswamy K, Balasubramanian V (1969) Indian. J Phys 43:454–463Google Scholar
- 55.Robiette AG, Cartwright GJ, Hoy AR, Mills IM (1971) Mol Phys 20:541–553Google Scholar
- 56.Krishnamachari SLNG (1955) Indian J Phys 29:147Google Scholar
- 57.Dublish AK, Srivastava BB, Pandey AN (1976) Indian J Pure Appl Phys 14:356Google Scholar
- 58.Balakrishnan R, Ramaswamy K (1979) Indian J Chem 18A:293Google Scholar
- 59.Bunnell J, Crafford BC, Ford TA (1980) J Mol Struct 61:383–396Google Scholar
- 60.Aron J, Bunnell J, Ford TA, Mercau N, Aroca R, Robinson EA (1984) J Mol Struct (THEOCHEM) 110:361–379Google Scholar
- 61.Mercau N, Aroca R, Robinson EA, Aron J, Bunnell J, Ford TA (1984) J Comput Chem 5:427–440Google Scholar
- 62.Bunnell J, Ford TA (1986) Spectrochim Acta 42A:543–550Google Scholar
- 63.Weaving JS, Ford TA (1987) J Mol Struct 161:245–264Google Scholar
- 64.Yarandina VN, Sverdlov LM (1969) Sov Phys J 11:138–143Google Scholar
- 65.Thirugnanasambandam O, Karunanidhi N (1977) Indian J Phys 51B:357–368Google Scholar
- 66.Rai SN, Subramanian C, Sivakumar P, Rao BK, Ramasamy P (1981) Indian J Pure Appl Phys 19:1215–1216Google Scholar
- 67.Mohan S, Ravikumar KG (1983) Acta Phys Polon A63:77–88Google Scholar
- 68.Bunnell J, Ford TA (1986) Spectrochim Acta 42A:551–556Google Scholar
- 69.Bürger H, Cichon J, Ruoff A (1974) Spectrochim Acta 30A:223–235Google Scholar
- 70.Georghiou C, Baker JC, Jones SR (1976) J Mol Spectrosc 63:89–97Google Scholar
- 71.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
- 72.Møller C, Plesset MS (1934) Phys Rev 46:618–622Google Scholar
- 73.Dunning Jr TH (1989) J Chem Phys 90:1007–1023Google Scholar
- 74.Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6796–6806Google Scholar
- 75.Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371Google Scholar
- 76.Peterson KA, Woon DE, Dunning Jr TH (1994) J Chem Phys 100:7410–7415Google Scholar
- 77.Wilson AK, van Mourik T, Dunning Jr TH (1996) J Mol Struct (THEOCHEM) 358:339–349Google Scholar
- 78.Schucharat KL, Didier BT, Elsethagen T, Sun L, Gurumoorthy V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052Google Scholar
- 79.Liu B, McLean AD (1973) J Chem Phys 59:4557–4558Google Scholar
- 80.Boys SF, Bernardi F (1970) Mol Phys 19:553–556Google Scholar
- 81.Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746Google Scholar
- 82.Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926Google Scholar
- 83.Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison. http://www.chem.wisc.edu/~nbo5. Accessed 4 Aug 2010
- 84.Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295Google Scholar