Advertisement

New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study

  • Gautomi Gogoi
  • Smruti R. Sahoo
  • Basanta Kumar Rajbongshi
  • Sridhar Sahu
  • Neelotpal Sen Sarma
  • Sagar SharmaEmail author
Original Paper

Abstract

A comprehensive computational study is performed on model compounds based on 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles of A-π-A′-π-A architecture (A and A′ represent 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles, respectively, and π is the bridging unit between them including thiophene, furan, and selenophene) for their utility as organic semiconductors. The compounds were found to possess planar geometry, which is a desired property for organic semiconductors. The electronic properties, including adiabatic and vertical electron affinity (EA), adiabatic and vertical ionization potential (IP), reorganization energy (λ), hole injection barrier and electron injection barrier, transfer integral, and charge mobility, were calculated. The electron affinity is higher in the case of thiophene/selenophene as the linker for a given terminal benzochalcogenadiazole than the corresponding compounds with furan as a linker, while the ionization potential is lowest for compounds having selenophene as the linker with a given terminal benzochalcogenadiazole moiety than the compounds having furan or thiophene as a linker. The hole injection barrier in these compounds is lower than the electron injection barrier, which facilitates the hole injection from the metal electrode, while hole reorganization energy is found to be larger than the electron reorganization energy. The compounds possess hole mobilities in the range of 2.50–4.91 cm2/Vs and electron mobilities in a similar range of 4.58–9.68 cm2/Vs. This study reveals that compounds based on a combination of diketopyrrolopyrrole and 2,1,3-benzochalcogenadiazole units would exhibit hole transporting properties and act as potential ambipolar materials.

Keywords

Density functional theory Organic semiconductors Diketopyrrolopyrroles 2,1,3-Benzochalcogenadiazole Charge carrier mobility 

Notes

Acknowledgments

Sagar Sharma would like to thank the Department of Science and Technology, Govt. of India for the INSPIRE faculty grant.

Supplementary material

894_2019_3922_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3692 kb)

References

  1. 1.
    Zhao X, Zhan X (2011) Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev 40:3728–3743PubMedCrossRefGoogle Scholar
  2. 2.
    Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X (2010) N-type organic semiconductors in organic electronics. Adv Mater 22:3876–3892PubMedCrossRefGoogle Scholar
  3. 3.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed Engl 47:4070–4098PubMedCrossRefGoogle Scholar
  4. 4.
    Wang Z, Zhang J, Xing R, Yuan J, Yan D, Han Y (2003) Micropatterning of organic semiconductor microcrystalline materials and OFET fabrication by “hot lift off”. J Am Chem Soc 125:15278–15279Google Scholar
  5. 5.
    Hepp A, Heil H, Weise W, Ahles M, Schmechel R, Von Seggern H (2003) Light-emitting field-effect transistor based on a tetracene thin film. Phys Rev Lett 91:157406-1–157406-4CrossRefGoogle Scholar
  6. 6.
    Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wang C, Dong C, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267PubMedCrossRefGoogle Scholar
  8. 8.
    Torrent MM, Rovira C (2011) Role of molecular order and solid-state structure in organic field-effect transistors. Chem Rev 111:4833–4856CrossRefGoogle Scholar
  9. 9.
    O’Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta RK, Ulla H, Satyanarayan MN, Sudhakar AA (2018) A perylene-triazine-based star-shaped green light emitter for organic light emitting diodes. Eur J Org Chem 13:1608–1613CrossRefGoogle Scholar
  11. 11.
    Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem 17:1988–2011CrossRefGoogle Scholar
  12. 12.
    Wong MY, Colman EZ (2017) Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater 29:1–54Google Scholar
  13. 13.
    Liu Y, Li C, Ren Z, Yan S, Bryce MR (2018) All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat Rev Mater 3:1–20CrossRefGoogle Scholar
  14. 14.
    Facchetti A (2013) Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132CrossRefGoogle Scholar
  15. 15.
    Bessette A, Hanan GS (2014) Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chem Soc Rev 43:3342–3405PubMedCrossRefGoogle Scholar
  16. 16.
    Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Chang WH, Yang Y (2017) Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater 2:1–13Google Scholar
  18. 18.
    Myers JD, Xue J (2012) Organic semiconductors and their applications in photovoltaic devices. Polym Rev 52:1–37CrossRefGoogle Scholar
  19. 19.
    Groves C (2017) Simulating charge transport in organic semiconductors and devices: a review. Rep Prog Phys 80:026502Google Scholar
  20. 20.
    Redondo CS, Kleine P, Roszeitis K, Achenbach T, Kroll M, Thomschke M, Reineke S (2017) Interplay of fluorescence and phosphorescence in organic bioluminescent emitters. J Phys Chem C 121:14946–14953CrossRefGoogle Scholar
  21. 21.
    Reineke S, Seidler N, Yost SR, Prins F, Tisdale WA, Baldo MA (2013) Highly efficient, dual state emission from an organic semiconductor. Appl Phys Lett 103:093302-1–093302-4CrossRefGoogle Scholar
  22. 22.
    Minnaert B, Veelaert P (2012) Guidelines for the bandgap combinations and absorption windows for organic tandem and triplet-junction solar cells. Materials 5:1933–1953PubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kruckemeier L, Kaienburg P, Flohre J, Bittkau K, Zonno I, Krogmeier B, Kirchartz T (2018) Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors. Commun Phys 27:1–10CrossRefGoogle Scholar
  24. 24.
    Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37CrossRefGoogle Scholar
  25. 25.
    Lacalle DC, Gozalvez C, Olano M, Sun X, Franco MM, Hueso LE, Alonso AM (2015) Bisthiadiazole-fused tetraazapentacenequinone: an air-stable solution-processable n-type organic semiconductor. Org Lett 17:5902–5905CrossRefGoogle Scholar
  26. 26.
    Newman CR, Frisbie CD, Filho DA da Silva, Brédas JL, Ewbank PC, Mann, KR (2004) Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem Mater 16:4436–4451Google Scholar
  27. 27.
    Zhang Y, Cai X, Bian Y, Li X, Jiang J (2008) Heteroatom substitution of oligothienoacenes: from good p-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J Phys Chem C 112:5148–5159CrossRefGoogle Scholar
  28. 28.
    Kim Y, Hong J, Oh JH, Yang C (2013) Naphthalene diimide incorporated thiophene-free copolymers with acene and heteroacene units: comparison of geometric features and electron-donating strength of co-units. Chem Mater 25:3251–3259CrossRefGoogle Scholar
  29. 29.
    Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9PubMedCrossRefGoogle Scholar
  30. 30.
    Thalacker C, Roger C, Wurthner F (2006) Synthesis and optical and redox properties of core-substituted naphthalene diimide dyes. J Org Chem 71:8098–8105PubMedCrossRefGoogle Scholar
  31. 31.
    Yiseen GA (2014) Synthesis and characterization of new monomer and new polymer of naphthalene diimide: electrochemical and optical studies. Int J Electrochem Sci 9:2575–2588Google Scholar
  32. 32.
    Queste M, Cadiou C, Pagoaga B, Giraudetc L, Hoffmann N (2010) Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracarboxy-3,4:9,10-diimide derivatives. New J Chem 34:2537–2545CrossRefGoogle Scholar
  33. 33.
    Chen HZ, Ling MM, Mo X, Shi MM, Wang M, Bao Z (2007) Air stable n-channel organic semiconductors for thin film transistors based on fluorinated derivatives of perylene diimides. Chem Mater 19:816–824CrossRefGoogle Scholar
  34. 34.
    Robb MJ, Newton B, Fors BP, Hawker CJ (2014) One-step synthesis of unsymmetrical n-alkyl-n′-aryl perylenediimides. J Org Chem 79:6360–6365PubMedCrossRefGoogle Scholar
  35. 35.
    Huang C, Barlow S, Marder SR (2011) Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem 76:2386–2407PubMedCrossRefGoogle Scholar
  36. 36.
    Rajaram S, Shivanna R, Kandappa SK, Narayan KS (2012) Nonplanar perylenediimides as potential alternatives to fullerenes in organic solar cells. J Phys Chem Lett 3:2405–2408PubMedCrossRefGoogle Scholar
  37. 37.
    Handa NV, Mendoza KD, Shirtcliff LD (2011) Syntheses and properties of 1,6 and 1,7 perylene diimides and tetracarboxylic dianhydrides. Org Lett 13:4724–4727PubMedCrossRefGoogle Scholar
  38. 38.
    Li Y, Wang C, Li C, Motta SD, Negri F, Wang Z (2012) Synthesis and properties of ethylene-annulated di(perylenediimides). Org Lett 14:5278–5281PubMedCrossRefGoogle Scholar
  39. 39.
    Liu SY, Liu XJQ, Fan CC, Fu WF, Ling J, Wu JY, Shi MM, Jen AKY, Chen HZ (2014) Pyrene and diketopyrrolopyrrole-based oligomers synthesized via direct arylation for OSC applications. ACS Appl Mater Interfaces 6:6765–6775PubMedCrossRefGoogle Scholar
  40. 40.
    Kim KH, Park S, Yu H, Kang H, Song I, Oh JH, Kim BJ (2014) Determining optimal crystallinity of diketopyrrolopyrrole-based terpolymers for highly efficient polymer solar cells and transistors. Chem Mater 26:6963–6970CrossRefGoogle Scholar
  41. 41.
    Back JY, Yu H, Song I, Kang AH, Shin TJ, Kwon S, Oh JH, Kim YH (2015) Investigation of structure−property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem Mater 27:1732–1739CrossRefGoogle Scholar
  42. 42.
    Hong HN, Kim HJ, Kim A, Choi S, Kim YU, Cho MJ, Choi DH (2018) Tunable intrinsic semiconducting properties of diketopyrrolopyrrole-based copolymers withd electron donating thiophene and electron accepting thiazole moieties. Synth Met 236:1–7CrossRefGoogle Scholar
  43. 43.
    Shi Y, Guo H, Qin M, Zhao J, Wang Y, Wang H, Wang Y, Facchetti A, Lu X, Guo X (2018) Thiazole imide-based all-acceptor homopolymers: achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater 30:1705745CrossRefGoogle Scholar
  44. 44.
    Mamada M, Nishida JI, Kumaki D, Tokito S, Yamashita Y (2007) N-type organic field effect transistors with high electron mobilities based on thiazole-thiazolothiazole conjugated molecules. Chem Mater 19:5404–5409CrossRefGoogle Scholar
  45. 45.
    Guo X, Puniredd SR, He B, Marszalek T, Baumgarten M, Pisula W, Müllen K (2014) Combination of two diketopyrrolopyrrole isomers in one polymer for ambipolar transport. Chem Mater 26:3595–3598PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    An C, Marszalek T, Guo X, Puniredd SR, Wagner M, Pisula W, Baumgarten M (2015) Tuning the optoelectronic properties of dual-acceptor based low-bandgap ambipolar polymers by changing the thiophene-bridge length. Polym Chem 6:6238–6245CrossRefGoogle Scholar
  47. 47.
    Zhang C, Zhao G, Zeng W, Tian K, Dong H, Hu W, Qin J, Yang C (2015) Ambipolar copolymer of dithienocoronenedi-imide and benzo (bis) thiadiazole with balanced hole and electron mobility. Org Electron 16:101–108CrossRefGoogle Scholar
  48. 48.
    Patil H, Gupta A, Bilic A, Bhosale SV, Bhosale SV (2014) A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells. Tetrahedron Lett 55:4430–4432CrossRefGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ (2013) Gaussian 09 in Revision E.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  50. 50.
    Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley, New YorkGoogle Scholar
  51. 51.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comp Chem 29:839–845CrossRefGoogle Scholar
  52. 52.
    Nelsen SF, Blackstock SC, Kim Y (1987) Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. J Am Chem Soc 109:677–682CrossRefGoogle Scholar
  53. 53.
    McMahon DP, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1:941–946CrossRefGoogle Scholar
  54. 54.
    Schein LB (1979) Band-hopping mobility transition in naphthalene and deuterated naphthalene. Phys Rev B 20:1631–1639CrossRefGoogle Scholar
  55. 55.
    Coropceanu V, Cornil J, Demetrio A, Filho DS, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952PubMedCrossRefGoogle Scholar
  56. 56.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  57. 57.
    Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24:966–978CrossRefGoogle Scholar
  58. 58.
    Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113CrossRefGoogle Scholar
  59. 59.
    Pati PB, Senanayak SP, Narayan KS, Zade SS (2013) Solution processable benzooxadiazole and benzothiadiazole based D-A-D molecules with chalcogenophene: field effect transistor study and structure property relationship. ACS Appl Mater Interfaces 5:12460–12468PubMedCrossRefGoogle Scholar
  60. 60.
    Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, AmsterdamGoogle Scholar
  61. 61.
    Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photophysical properties of naphtho[2,1-b:6,5-b′]difuran derivatives: a theoretical study. Sci Adv Mater 6:1–13CrossRefGoogle Scholar
  62. 62.
    Zhao C, Wang W, Ma Y (2013) Molecular design toward good hole transport materials based on anthra [2,3-c] thiophene: a theoretical investigation. Comput Theor Chem 1010:25–31CrossRefGoogle Scholar
  63. 63.
    Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked Pentacene layer organic thin-film transistors with improved characteristics. IEEE electron device letters 18:606–608CrossRefGoogle Scholar
  64. 64.
    Horowitz G, Lang P, Mottaghi M, Aubin H (2004) Extracting parameters from the current-voltage characteristics of organic field effect transistors. Adv Func Mater 14:1069–1074CrossRefGoogle Scholar
  65. 65.
    Lukes V, Cagardova D, Michalik M, Poliak P (2018) Density-functional theoretical study of fluorination effect on the electronic structure and electron drift mobilities of symmetric pentacene derivatives. Synth Met 240:67–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia
  2. 2.High Performance Computing Lab, Department of Applied PhysicsIndian Institute of Technology (ISM)DhanbadIndia
  3. 3.Cotton UniversityGuwahatiIndia
  4. 4.Department of Chemistry, School of Fundamental and Applied SciencesAssam Don Bosco UniversityGuwahatiIndia

Personalised recommendations