Advertisement

How to design potent and selective DYRK1B inhibitors? Molecular modeling study

  • Agnieszka Szamborska-Gbur
  • Ewelina Rutkowska
  • Agnieszka Dreas
  • Michael Frid
  • Maria Vilenchik
  • Mariusz Milik
  • Krzysztof Brzózka
  • Marcin KrólEmail author
Original Paper
  • 55 Downloads
Part of the following topical collections:
  1. 8th conference on Modeling & Design of Molecular Materials (MDMM 2018)

Abstract

DYRK1B protein kinase is an emerging anticancer target due to its overexpression in a variety of cancers and its role in cancer chemoresistance through maintaining cancer cells in the G0 (quiescent) state. Consequently, there is a growing interest in the development of potent and selective DYRK1B inhibitors for anticancer therapy. One of the major off-targets is another protein kinase, GSK3β, which phosphorylates an important regulator of cell cycle progression on the same residue as DYRK1B and is involved in multiple signaling pathways. In the current work, we performed a detailed comparative structural analysis of DYRK1B and GSK3β ATP-binding sites and identified key regions responsible for selectivity. As the crystal structure of DYRK1B has never been reported, we built and optimized a homology model by comparative modeling and metadynamics simulations. Calculation of interaction energies between docked ligands in the ATP-binding sites of both kinases allowed us to pinpoint key residues responsible for potency and selectivity. Specifically, the role of the gatekeeper residues in DYRK1B and GSK3β is discussed in detail, and two other residues are identified as key to selectivity of DYRK1B inhibition versus GSK3β. The analysis presented in this work was used to support the design of potent and selective azaindole-quinoline-based DYRK1B inhibitors and can facilitate development of more selective inhibitors for DYRK kinases.

Keywords

DYRK1B GSK3β Cancer cell quiescence Homology modeling Metadynamics simulations Kinase inhibitor selectivity 

Notes

Acknowledgements

This work was supported by the European Union from the European Regional Development Fund within the frame Operational Programme Innovative Economy (Grant No. UDA-POIG.01.04.00-12-048/11-00). Project title: New pharmacotherapy of neurodegenerative diseases: innovative kinase inhibitors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cohen P (2002) Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315CrossRefGoogle Scholar
  2. 2.
    Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39.  https://doi.org/10.1038/nrc2559 CrossRefPubMedGoogle Scholar
  3. 3.
    Fedorov O, Muller S, Knapp S (2010) The (un)targeted cancer kinome. Nat Chem Biol 6:166–169CrossRefGoogle Scholar
  4. 4.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934.  https://doi.org/10.1126/science.1075762 CrossRefPubMedGoogle Scholar
  5. 5.
    Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, Gstaiger M (2013) The protein interaction landscape of the human CMGC kinase group. Cell Rep 3:1306–1320CrossRefGoogle Scholar
  6. 6.
    Singh R, Lauth M (2017) Emerging roles of DYRK kinases in embryogenesis and hedgehog pathway control. J Dev Biol 5:13–28.  https://doi.org/10.3390/jdb5040013 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Park J, Song W-J, Chung KC (2009) Function and regulation of Dyrk1A: towards understanding down syndrome. Cell Mol Life Sci 66:3235–3240.  https://doi.org/10.1007/s00018-009-0123-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Rosse G (2013) Tricyclic pyrimidines as inhibitors of DYRK1A/DYRK1B as potential treatment for Down’s syndrome or Alzheimer’s disease. ACS Med Chem Lett 4:502–503CrossRefGoogle Scholar
  9. 9.
    Ionescu A, Dufrasne F, Gelbcke M, Jabin I, Kiss R, Lamoral-Theys D (2012) DYRK1A kinase inhibitors with emphasis on cancer. Mini Rev Med Chem 12:1315–1329.  https://doi.org/10.2174/13895575112091315 CrossRefPubMedGoogle Scholar
  10. 10.
    Mercer S, Friedman E (2006) Mirk/Dyrk1B: a multifunctional dual-specificity kinase involved in growth arrest, differentiation, and cell survival. Cell Biochem Biophys 45:303–315CrossRefGoogle Scholar
  11. 11.
    Deng X, Mercer SE, Sun C-Y, Friedman E (2014) The normal function of the cancer kinase Mirk/dyrk1B is to reduce reactive oxygen species. Genes Cancer 5:22–30.  https://doi.org/10.18632/genesandcancer.1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen Y, Wang S, He Z, Sun F, Huang Y, Ni Q, Wang H, Wang Y, Cheng C (2017) Dyrk1B overexpression is associated with breast cancer growth and a poor prognosis. Hum Pathol 66:48–58.  https://doi.org/10.1016/j.humpath.2017.02.033 CrossRefPubMedGoogle Scholar
  13. 13.
    Friedman E (2010) The kinase Mirk/dyrk1B: a possible therapeutic target in pancreatic cancer. Cancers (Basel) 2:1492–1512.  https://doi.org/10.3390/cancers2031492 CrossRefGoogle Scholar
  14. 14.
    Gruber W, Hutzinger M, Elmer DP, Parigger T, Sternberg C, Cegielkowski L, Zaja M, Leban J, Michel S, Hamm S, Vitt D, Aberger F (2016) DYRK1B as therapeutic target in hedgehog/GLI-dependent cancer cells with smoothened inhibitor resistance. Oncotarget 7:7134–7148.  https://doi.org/10.18632/oncotarget.6910 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mercer SE, Ewton DZ, Shah S, Naqvi A, Friedman E (2006) Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Cancer Res 66:5143–5150.  https://doi.org/10.1158/0008-5472.CAN-05-1539 CrossRefPubMedGoogle Scholar
  16. 16.
    Singh R, Dhanyamraju PK, Lauth M (2017) DYRK1B blocks canonical and promotes non-canonical hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 8:833–845.  https://doi.org/10.18632/oncotarget.13662 CrossRefPubMedGoogle Scholar
  17. 17.
    Becker W (2018) A wake-up call to quiescent cancer cells – potential use of DYRK1B inhibitors in cancer therapy. FEBS J 285:1203–1211.  https://doi.org/10.1111/febs.14347 CrossRefPubMedGoogle Scholar
  18. 18.
    Li L, Liu Y, Zhang Q, Zhou H, Zhang Y, Yan B (2014) Comparison of cancer cell survival triggered by microtubule damage after turning Dyrk1B kinase on and off. ACS Chem Biol 9:731–742.  https://doi.org/10.1021/cb4005589 CrossRefPubMedGoogle Scholar
  19. 19.
    Friedman E (2007) Mirk/Dyrk1B in cancer. J. Cell. Biochem. 102:274–279.  https://doi.org/10.1002/jcb.21451 CrossRefPubMedGoogle Scholar
  20. 20.
    Mercer SE, Friedman E (2006) Mirk/Dyrk1B: a multifunctional dual-specificity kinase involved in growth arrest, differentiation, and cell survival. Cell Biochem Biophys 45:303–315.  https://doi.org/10.1385/CBB:45:3:303 CrossRefPubMedGoogle Scholar
  21. 21.
    Gao J, Zheng Z, Rawal B, Schell MJ, Bepler G, Haura EB (2009) Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancer Biol Ther 8:1671–1679.  https://doi.org/10.4161/cbt.8.17.9322 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gao J, Yang X, Yin P, Hu W, Liao H, Miao Z, Pan C, Li N (2012) The involvement of FoxO in cell survival and chemosensitivity mediated by Mirk/Dyrk1B in ovarian cancer. Int J Oncol 40:1203–1209.  https://doi.org/10.3892/ijo.2011.1293 CrossRefPubMedGoogle Scholar
  23. 23.
    Friedman E (2013) The kinase MIRK/DYRK1B mediates a reversible quiescent state in a subset of ovarian, pancreatic and colon cancers. In: Hayat M (ed) Tumor dormancy, quiescence, and senescence. Springer, Dordrech, pp 117–126Google Scholar
  24. 24.
    Hu J, Nakhla H, Friedman E (2011) Transient arrest in a quiescent state allows ovarian cancer cells to survive suboptimal growth conditions and is mediated by both Mirk/dyrk1b and p130/RB2. Int J Cancer 129:307–318.  https://doi.org/10.1002/ijc.25692 CrossRefPubMedGoogle Scholar
  25. 25.
    Zou Y, Ewton DZ, Deng X, Mercer SE, Friedman E (2004) Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. J Biol Chem 279:27790–27798.  https://doi.org/10.1074/jbc.M403042200 CrossRefPubMedGoogle Scholar
  26. 26.
    Gao J, Zhao Y, Lv Y, Chen Y, Wei B, Tian J, Yang Z, Kong F, Pang J, Liu J, Shi H (2013) Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int 13:2–9.  https://doi.org/10.1186/1475-2867-13-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ewton DZ, Hu J, Vilenchik M, Deng X, Luk K-c, Polonskaia A, Hoffman AF, Zipf K, Boylan JF, Friedman EA (2011) Inactivation of Mirk/Dyrk1b kinase targets quiescent pancreatic Cancer cells. Mol Cancer Ther 10:2104–2114.  https://doi.org/10.1158/1535-7163.MCT-11-0498 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kettle JG, Ballard P, Bardelle C, Cockerill M, Colclough N, Critchlow SE, Debreczeni J, Fairley G, Fillery S, Graham MA, Goodwin L, Guichard S, Hudson K, Ward RA, Whittaker D (2015) Discovery and optimization of a novel series of dyrk1b kinase inhibitors to explore a MEK resistance hypothesis. J Med Chem 58:2834–2844.  https://doi.org/10.1021/acs.jmedchem.5b00098 CrossRefPubMedGoogle Scholar
  29. 29.
    Hu J, Deng H, Friedman EA (2013) Ovarian cancer cells, not normal cells, are damaged by Mirk/Dyrk1B kinase inhibition. Int J Cancer 132:2258–2269.  https://doi.org/10.1002/ijc.27917 CrossRefPubMedGoogle Scholar
  30. 30.
    Taira N, Mimoto R, Kurata M, Yamaguchi T, Kitagawa M, Miki Y, Yoshida K (2012) DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J Clin Invest 122:859–872.  https://doi.org/10.1172/JCI60818DS1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161.  https://doi.org/10.1038/nchembio.296 CrossRefPubMedGoogle Scholar
  32. 32.
    Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367.  https://doi.org/10.1038/nature11159 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JSC, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315.  https://doi.org/10.1042/BJ20070797 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bamborough P, Drewry D, Harper G, Smith GK, Schneider K (2008) Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J Med Chem 51:7898–7914.  https://doi.org/10.1021/jm8011036 CrossRefPubMedGoogle Scholar
  35. 35.
    Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Resource comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045.  https://doi.org/10.1038/nbt.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051.  https://doi.org/10.1038/nbt.1990 CrossRefPubMedGoogle Scholar
  37. 37.
    Sheridan RP, Nam K, Maiorov VN, McMasters DR, Cornell WD (2009) QSAR models for predicting the similarity in binding profiles for pairs of protein kinases and the variation of models between experimental data sets. J Chem Inf Model 49:1974–1985CrossRefGoogle Scholar
  38. 38.
    Martin E, Mukherjee P, Sullivan D, Jansen J (2011) Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity. J Chem Inf Model 51:1942–1956CrossRefGoogle Scholar
  39. 39.
    Ravichandran S, Luke BT, Collins JR (2015) Can structural features of kinase receptors provide clues on selectivity and inhibition? A molecular modeling study. J Mol Graph Model 57:36–48.  https://doi.org/10.1016/j.jmgm.2014.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR (2015) Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A 112:5381–5390.  https://doi.org/10.1073/pnas.1515281112 CrossRefGoogle Scholar
  41. 41.
    Levinson NM, Boxer SG (2014) A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nat Chem Biol 10:127–132.  https://doi.org/10.1038/nchembio.1404 CrossRefPubMedGoogle Scholar
  42. 42.
    van Linden OPJ, Kooistra AJ, Leurs R, de Esch IJP, de Graaf C (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57:249–277.  https://doi.org/10.1021/jm400378w CrossRefPubMedGoogle Scholar
  43. 43.
    Beurel E, Grieco SF, Jope RS (2015) Pharmacology & Therapeutics Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131.  https://doi.org/10.1016/j.pharmthera.2014.11.016
  44. 44.
    Ashford A, Oxley D, Kettle JG, Hudson K, Guichard S, Cook S, Lochhead P (2014) A novel DYRK1B inhibitor AZ191 demonstrates that DYRK1B acts independently of GSK3β to phosphorylate cyclin D1 at Thr286, not Thr288. Biochem J 457:43–56Google Scholar
  45. 45.
    Schrödinger, LLC (2018) Schrödinger release 2018-1: Prime. Schrödinger, LLC, New YorkGoogle Scholar
  46. 46.
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112PubMedGoogle Scholar
  47. 47.
    Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566CrossRefGoogle Scholar
  48. 48.
    Clark AJ, Tiwary P, Borrelli K, Feng S, Miller EB, Abel R, Friesner RA, Berne BJ (2016) Prediction of protein–ligand binding poses via a combination of induced fit docking and Metadynamics simulations. J Chem Theory Comput 12:2990–2998.  https://doi.org/10.1021/acs.jctc.6b00201 CrossRefPubMedGoogle Scholar
  49. 49.
    Schrödinger, LLC (2018) Schrödinger release 2018-1: Glide. Schrödinger, LLC, New YorkGoogle Scholar
  50. 50.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296.  https://doi.org/10.1021/acs.jctc.5b00864 CrossRefPubMedGoogle Scholar
  51. 51.
    Schrödinger, LLC (2018) Schrödinger release 2018-1: LigPrep, Epik. Schrödinger, LLC, New YorkGoogle Scholar
  52. 52.
    Anderson K, Chen Y, Chen Z, Dominique R, Glenn K, He Y, Janson C, Luk KC, Lukacs C, Polonskaia A, Qiao Q, Railkar A, Rossman P, Sun H, Xiang Q, Vilenchik M, Wovkulich P, Zhang X (2013) Pyrido[2,3-d]pyrimidines: discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors. Bioorganic Med Chem Lett 23:6610–6615.  https://doi.org/10.1016/j.bmcl.2013.10.055 CrossRefGoogle Scholar
  53. 53.
    Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, Gerber SA, Eswaran J, Knapp S, Elkins JM (2013) Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21:986–996.  https://doi.org/10.1016/j.str.2013.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rothweiler U, Stensen W, Brandsdal BO, Isaksson J, Leeson FA, Engh RA, Svendsen JSM (2016) Probing the ATP-binding pocket of protein kinase DYRK1A with Benzothiazole fragment molecules. J Med Chem 59:9814–9824.  https://doi.org/10.1021/acs.jmedchem.6b01086 CrossRefPubMedGoogle Scholar
  55. 55.
    Schrödinger, LLC (2018) Schrödinger release 2018-1: Protein-Ligand Database (PLDB). Schrödinger, LLC, New YorkGoogle Scholar
  56. 56.
    Ruben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W (2015) Selectivity profiling and biological activity of novel β-carbolines as potent and selective DYRK1 kinase inhibitors. PLoS One 10:1–18.  https://doi.org/10.1371/journal.pone.0132453 CrossRefGoogle Scholar
  57. 57.
    Meine R, Becker W, Falke H, Preu L, Loaëc N, Meijer L, Kunick C (2018) Indole-3-carbonitriles as DYRK1A inhibitors by fragment-based drug design. Molecules 23:1–23.  https://doi.org/10.3390/molecules23020064 CrossRefGoogle Scholar
  58. 58.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sivaprakasam P, Han X, Civiello RL, Jacutin-Porte S, Kish K, Pokross M, Lewis HA, Ahmed N, Szapiel N, Newitt JA, Baldwin ET, Xiao H, Krause CM, Park H, Nophsker M, Lippy JS, Burton CR, Langley DR, Macor JE, Dubowchik GM (2015) Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorganic Med Chem Lett 25:1856–1863.  https://doi.org/10.1016/j.bmcl.2015.03.046 CrossRefGoogle Scholar
  60. 60.
    Norman RA, Toader D, Ferguson AD (2012) Structural approaches to obtain kinase selectivity. Trends Pharmacol Sci 33:273–278.  https://doi.org/10.1016/j.tips.2012.03.005 CrossRefPubMedGoogle Scholar
  61. 61.
    Vulpetti A, Bosotti R (2004) Sequence and structural analysis of kinase ATP pocket residues. Farmaco 59:759–765.  https://doi.org/10.1016/j.farmac.2004.05.010 CrossRefPubMedGoogle Scholar
  62. 62.
    Maqbool M, Mobashir M, Hoda N (2016) Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. Eur J Med Chem 107:63–81CrossRefGoogle Scholar
  63. 63.
    Schmitt C, Kail D, Mariano M, Empting M, Weber N, Paul T, Hartmann RW, Engel M (2014) Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One 9:e87851.  https://doi.org/10.1371/journal.pone.0087851 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vulpetti A, Crivori P, Cameron A, Bertrand J, Brasca MG, D’Alessio R, Pevarello P (2005) Structure-based approaches to improve selectivity: CDK2-GSK3beta binding site analysis. J Chem Inf Model 45:1282–1290.  https://doi.org/10.1021/ci0500280 CrossRefPubMedGoogle Scholar
  65. 65.
    Fischer PM (2003) CDK versus GSK-3 inhibition. A purple haze no longer? Chem Biol 10:1144–1146.  https://doi.org/10.1016/j.chembiol.2003.12.009
  66. 66.
    Domínguez JM, Fuertes A, Orozco L, Del M-MM, Delgado E, Medina M (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem 287:893–904.  https://doi.org/10.1074/jbc.M111.306472 CrossRefPubMedGoogle Scholar
  67. 67.
    Kramer T, Schmidt B, Lo Monte F (2012) Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int J Alzheimers Dis 2012:381029Google Scholar
  68. 68.
    Li X, Wang X, Tian Z, Zhao H, Liang D, Li W, Qiu Y, Lu S (2014) Structural basis of valmerins as dual inhibitors of GSK3β/CDK5. J Mol Model 20:1–11.  https://doi.org/10.1007/s00894-014-2407-1 CrossRefGoogle Scholar
  69. 69.
    Dreas A, Fabritius CH, Dzienia A, Buda A, Gałęzowski M, Kachkovskyi G, Kulesza U, Kucwaj-Brysz K, Szamborska-Gbur A, Czardybon W, Vilenchik M, Frid M, Kuznetsova A (2018) Quinoline-1H-pyrrolo[2, 3-b] pyridine derivatives as inhibitors of DYRK1A and/or DYRK1B kinases and their preparation, pharmaceutical compositions and use in the treatment of diseases. Patent No. WO 2018119039 (A1)Google Scholar
  70. 70.
    Böhm H-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. Chembiochem 5:637–643.  https://doi.org/10.1002/cbic.200301023 CrossRefPubMedGoogle Scholar
  71. 71.
    Barreiro EJ, Kümmerle AE, Fraga CAM (2011) The methylation effect in medicinal chemistry. Chem Rev 111:5215–5246.  https://doi.org/10.1021/cr200060g CrossRefPubMedGoogle Scholar
  72. 72.
    Bazzini P, Wermuth CG (2008) In the practice of medicinal chemistry. Academic, San Diego, pp 431–463Google Scholar
  73. 73.
    Kim S-K, Fristrup P, Abrol R, Goddard WA (2011) Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials. J Chem Inf Model 51:3262–3274.  https://doi.org/10.1021/ci200435b CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Aleksandra M, Robert V (2017) What a difference a methyl group makes: the selectivity of monoamine oxidase B towards histamine and N-methylhistamine. Chem – A Eur J 23:2915–2925.  https://doi.org/10.1002/chem.201605430 CrossRefGoogle Scholar
  75. 75.
    Buzko O, Shokat KM (2002) A kinase sequence database: sequence alignments and family assignment. Bioinformatics 18:1274–1275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Selvita S.A.KrakówPoland
  2. 2.Felicitex Therapeutics, Inc.NatickUSA

Personalised recommendations