Advertisement

Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading

  • Linyuan Wang
  • Kai ZhongEmail author
  • Jie Ma
  • Jian LiuEmail author
  • Hua Xu
Original Paper
  • 29 Downloads

Abstract

Plastic bonded explosive (PBX) is a typical composite material used widely in the defense industry and in aerospace engineering. The mechanical behavior of PBX is an important factor to be considered in its formulation design, but the initial mechanical response is not well understood due to the complexities of atomic interactions in a multi-component system. We applied a hybrid force field to investigate the initial mechanical response of cyclotrimethylenetrinitramine(RDX)-based PBX, by molecular dynamics. The structure evolution shows that the initial damage occurs mainly in the binder region, and is caused by conformational stretching and void propagation. The relationship between loading rate and initial damage indicates that lower loading rate is more beneficial to conformation relaxation, and consequently to increasing strain limitation. The energy profile indicates that the variation of non-bonded interaction energy, especially coulomb energy, has a significant influence on the variation of total energy. Therefore, when designing PBX, good mechanical strength can be expected by selecting polymer and explosive formulations with strong electrostatic interaction.

Graphical abstract

The structure evolution and energy profile of plastic bonded explosive (PBX) under uniaxial tension

Keywords

Composite material Plastic bonded explosive Mechanical response MD simulation 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11572296).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

894_2018_3913_MOESM1_ESM.docx (428 kb)
Supplementary Materials 1 (1) The principle of short-range correction on van der Waals energy in SB force field; (2) Evolution of stress during 10 NVT-NPT cycles; (3) The appointed space of random filling algorithm; (4) Potential energy curves of bulk RDX; (5) The detailed parameters of hybrid force field in this work. (DOCX 427 kb)

References

  1. 1.
    Espinosa HD, Soler-Crespo R (2017) Materials science: lessons from tooth enamel. Nature 543:42CrossRefGoogle Scholar
  2. 2.
    Gao W, Dos Reis R, Schelhas LT, Pool VL, Toney MF, Yu KM, Walukiewicz W (2016) Formation of nanoscale composite materials of compound semiconductors driven by charge transfer. Nano Lett 16:5247–5254CrossRefGoogle Scholar
  3. 3.
    Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun JH, Kim BS, Chou TW (2015) Additive manufacturing of multi-directional preforms for composite materials: opportunities and challenges. Mater Today 18:503–512CrossRefGoogle Scholar
  4. 4.
    Huang X, Zhou S, Sun G, Li G, Xie YM (2015) Topology optimization for microstructures of viscoelastic composite materials. Comput Method Appl M 283:503–516CrossRefGoogle Scholar
  5. 5.
    Fernande DM, Barbosa AD, Pires J, Balula SS, Cunha-Silva L, Freire C (2013) Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation. ACS Appl Mater Inter 5:13382–13390CrossRefGoogle Scholar
  6. 6.
    Vekilov PG (2011) Gold nanoparticles: grown in a crystal. Nat Nanotechnol 6:82CrossRefGoogle Scholar
  7. 7.
    Yu C, Li G, Kumar S, Kawasaki H, Jin R (2013) Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity. J Phys Chem Lett 4:2847–2852CrossRefGoogle Scholar
  8. 8.
    Grewe T, Deng X, Weidenthaler C, Schüth F, Tüysüz H (2013) Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation. Chem Mater 25:4926–4935CrossRefGoogle Scholar
  9. 9.
    Fan X, Yang Z, Long W, Yang B, Jing J, Wang R (2013) The preparation and electrochemical performances of the composite materials of CeO2 and ZnO as anode material for Ni–Zn secondary batteries. Electrochim Acta 108:741–748CrossRefGoogle Scholar
  10. 10.
    Zuo S, Li D, Wu Z, Sun Y, Lu Q, Wang F, Zhuo R, Yan D, Wang J, Yan P (2018) SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim Acta 264:61–68CrossRefGoogle Scholar
  11. 11.
    Belharouak I, Koenig Jr GM, Ma J, Wang DP, Amine K (2011) Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials. Electrochem Commun 13:232–236CrossRefGoogle Scholar
  12. 12.
    Liu B, Abouimrane A, Balasubramanian M, Ren Y, Amine K (2014) GeO2–SnCoC composite anode material for lithium-ion batteries. J Phys Chem C 118:3960–3967CrossRefGoogle Scholar
  13. 13.
    Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2014) Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J Power Sources 248:939–942CrossRefGoogle Scholar
  14. 14.
    Yu Y, Chen H, Liu Y, Craig VS, Li LH, Chen Y, Tricoli A (2014) Porous carbon nanotube/polyvinylidene fluoride composite material: superhydrophobicity/superoleophilicity and tunability of electrical conductivity. Polymer 55:5616–5622CrossRefGoogle Scholar
  15. 15.
    Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292CrossRefGoogle Scholar
  16. 16.
    Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRefGoogle Scholar
  17. 17.
    Yaumi AL, Bakar MZA, Hameed BH (2017) Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 124:461–480CrossRefGoogle Scholar
  18. 18.
    Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11:120–127CrossRefGoogle Scholar
  19. 19.
    Grossman M, Bouville F, Erni F, Masania K, Libanori R, Studart AR (2017) Mineral nano-interconnectivity stiffens and toughens nacre-like composite materials. Adv Mater 29:1605039CrossRefGoogle Scholar
  20. 20.
    Dukali RM, Radovic I, Stojanovic DB, Uskokovic PS, Romcevic N, Radojevic V, Aleksic R (2014) Preparation, characterization and mechanical properties of Bi12SiO20–PMMA composite films. J Alloy Compd 583:376–381CrossRefGoogle Scholar
  21. 21.
    Wang J, Shi C, Yang N, Sun H, Liu Y, Song B (2018) Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body. Compos Struct 184:1189–1196CrossRefGoogle Scholar
  22. 22.
    Salnikov V, Lemaitre S, Choï D, Karamian-Surville P (2015) Measure of combined effects of morphological parameters of inclusions within composite materials via stochastic homogenization to determine effective mechanical properties. Compos Struct 129:122–131CrossRefGoogle Scholar
  23. 23.
    Abu-Farsakh GA, Asfa AM (2018) Macro-mechanical damage modeling of fibrous composite materials accounting for non-linear material behavior. Compos Sci Technol 156:287–295CrossRefGoogle Scholar
  24. 24.
    Watkins EB, Velizhanin KA, Dattelbaum DM, Gustavsen RL, Aslam TD, Podlesak DW, Huber RC, Firestone MA, Ringstrand BS, Willey TM et al (2017) Evolution of carbon clusters in the detonation products of the triaminotrinitrobenzene (TATB)-based explosive PBX 9502. J Phys Chem C 121:23129–23140CrossRefGoogle Scholar
  25. 25.
    Niu H, Chen S, Shu Q, Li L, Jin S (2017) Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate based polymer bonded explosive. J Hazard Mater 338:208–217CrossRefGoogle Scholar
  26. 26.
    Yan G, Fan Z, Huang S, Liu J, Wang Y, Tian Q, Bai L, Gong J, Sun G, Wang X (2017) Phase retransformation and void evolution of previously heated HMX-based plastic-bonded explosive in wet air. J Phys Chem C 121:20426–20432CrossRefGoogle Scholar
  27. 27.
    Chen P, Huang F, Ding Y (2007) Microstructure, deformation and failure of polymer bonded explosive. J Mater Sci 42:5272–5280CrossRefGoogle Scholar
  28. 28.
    Zhao PD, Lu FY, Lin YL, Chen R, Li JL, Lu L (2012) Technique for combined dynamic compression–shear testing of PBXs. Exp Mech 52:205–213CrossRefGoogle Scholar
  29. 29.
    Chen P, Xie H, Huang F, Huang T, Ding Y (2006) Deformation and failure of polymer bonded explosives under diametric compression test. Polym Test 25:333–341CrossRefGoogle Scholar
  30. 30.
    Smith GD, Bharadwaj RK (1999) Quantum chemistry based force field for simulations of HMX. J Phys Chem B 103:3570–3575CrossRefGoogle Scholar
  31. 31.
    Bedrov D, Ayyagari C, Smith GD, Sewell TD, Menikoff R, Zaug JM (2001) Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field. J Comput-Aided Mater 8:77–85CrossRefGoogle Scholar
  32. 32.
    Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182CrossRefGoogle Scholar
  33. 33.
    Hwang MJ, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc 116:2515–2525CrossRefGoogle Scholar
  34. 34.
    Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987CrossRefGoogle Scholar
  35. 35.
    Cawkwell MJ, Ramos KJ, Hooks DE, Sewell TD (2010) Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J Appl Phys 107:063512CrossRefGoogle Scholar
  36. 36.
    Mathew N, Picu CR, Chung PW (2013) Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine. J Phys Chem A 117:5326–5334CrossRefGoogle Scholar
  37. 37.
    Ramos KJ, Hooks DE, Sewell TD, Cawkwell MJ (2010) Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals. J Appl Phys 108:066105CrossRefGoogle Scholar
  38. 38.
    Pal A, Picu RC (2014) Rotational defects in cyclotrimethylene trinitramine (RDX) crystals. J Chem Phys 140:044512CrossRefGoogle Scholar
  39. 39.
    Weingarten NS, Sausa RC (2015) Nanomechanics of RDX single crystals by force–displacement measurements and molecular dynamics simulations. J Phys Chem A 119:9338–9351CrossRefGoogle Scholar
  40. 40.
    Wang L, Ma J, He X, Ke H, Liu J (2017) Learning the deformation mechanism of poly (vinylidine fluoride-co-chlorotrifluoroethylene): an insight into strain-induced microstructure evolution via molecular dynamics. J Mol Model 23:361CrossRefGoogle Scholar
  41. 41.
    Shenogin S, Ozisik R (2005) Deformation of glassy polycarbonate and polystyrene: the influence of chemical structure and local environment. Polymer 46:4397–4404CrossRefGoogle Scholar
  42. 42.
    Lordi V, Yao N (2000) Molecular mechanics of binding in carbon-nanotube-polymer composites. J Mater Res 15:2770–2779CrossRefGoogle Scholar
  43. 43.
    Song HJ, Zhang YG, Li H, Zhou T, Huang FL (2014) All-atom, non-empirical, and tailor-made force field for α-RDX from first principles. RSC Adv 4:40518–40533CrossRefGoogle Scholar
  44. 44.
    Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 28:2857–2862Google Scholar
  45. 45.
    Li C, Strachan A (2011) Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer 52:2920–2928CrossRefGoogle Scholar
  46. 46.
    Li C, Jaramillo E, Strachan A (2013) Molecular dynamics simulations on cyclic deformation of an epoxy thermoset. Polymer 54:881–890CrossRefGoogle Scholar
  47. 47.
    Valavala PK, Odegard GM, Aifantis EC (2009) Influence of representative volume element size on predicted elastic properties of polymer materials. Model Simul Mater Sci Eng 17:045004CrossRefGoogle Scholar
  48. 48.
    Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52:2445–2452CrossRefGoogle Scholar
  49. 49.
    Nose SA (1984) Molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefGoogle Scholar
  50. 50.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  51. 51.
    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015012CrossRefGoogle Scholar
  52. 52.
    He G, Liu J, Lin C, Liu S (2015) Evaluation of the fracture behaviors of fluoropolymer binders with the essential work of fracture (EWF). RSC Adv 5:100408–100417CrossRefGoogle Scholar
  53. 53.
    Arora H, Tarleton E, Li-Mayer J, Charalambides MN, Lewis D (2015) Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method. Comput Mater Sci 110:91–101CrossRefGoogle Scholar
  54. 54.
    Schneider J, Panagiotopoulos AZ, Müller-Plathe F (2017) Polymer chain collapse upon rapid solvent exchange: slip-spring dissipative particle dynamics simulations with an explicit-solvent model. J Phys Chem C 121:27664–27673CrossRefGoogle Scholar
  55. 55.
    Ryoki A, Kim D, Kitamura S, Terao K (2018) Linear and cyclic amylose derivatives having brush like side groups in solution: amylose tris(n-octadecylcarbamate)s. Polymer 137:13–21CrossRefGoogle Scholar
  56. 56.
    Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM-US 66:399–407CrossRefGoogle Scholar
  57. 57.
    Patel M, Kiran MPS, Kumari S, Singh V, Singh S, Prasad VB (2018) Effect of oxidation and residual stress on mechanical properties of SiC seal coated C/SiC composite. Ceram Int 44:1633–1640CrossRefGoogle Scholar
  58. 58.
    Wang JS, Hsieh CC, Lin CM, Chen EC, Kuo CW, Wu W (2014) The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy. Mater Sci Eng A-Struct 605:98–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduChina
  2. 2.Institute of Chemical Materials, China Academy of Engineering Physics (CAEP)MianyangChina
  3. 3.CNOOC Safety and Technology Services Co., LtdGuangzhouChina

Personalised recommendations