Advertisement

Improved GAFF2 parameters for fluorinated alkanes and mixed hydro- and fluorocarbons

  • Johannes Träg
  • Dirk ZahnEmail author
Original Paper
  • 180 Downloads
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

We present improved molecular mechanics models for perfluorocarbons and mixed hydro- and fluorocarbons, based on the GAFF2 force field. Benchmarking was performed for a series of single molecule geometries and for condensed phases, namely self-assembled monolayers comprising perfluoro-octadecane phosphonic acids. From this, considerable improvement of the torsion angles is demonstrated. Apart from structural characterization, we also illustrate the implications of the old and new GAFF2-type models for mechanical properties by mimicking self-assembled monolayer indentation.

Keywords

GAFF2 Force field Fluorocarbons Teflon 

Notes

Supplementary material

894_2018_3911_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2041 kb)

References

  1. 1.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157Google Scholar
  2. 2.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kvalenko A, Kollman PA (2012) AMBER 13. University of California, San FranciscoGoogle Scholar
  3. 3.
    Case DA, Betz RM, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmeling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San FranciscoGoogle Scholar
  4. 4.
    Bunn CW, Howells ER (1954) Structures of molecules and crystals of fluoro-carbons. Nature 174:549Google Scholar
  5. 5.
    Wittmann J E, Stiegler L, Henkel C, Träg J, Götz K, Unruh T, Zahn D, Guldi D, Hirsch A, Halik M (2018) Multifunctional and tunable surfaces based on pyrene functionalized nanoparticles. Adv Mater Interfaces.  https://doi.org/10.1002/admi.201801930
  6. 6.
    Frisch MJ et al (2010) Gaussian 09 Revision C.01. Gaussian Inc., Wallingford CTGoogle Scholar
  7. 7.
    Todorov LT, Smith W (2012) The DL_POLY_4 User Manual. STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire, England, UKGoogle Scholar
  8. 8.
    Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16:1911Google Scholar
  9. 9.
    Plimpton S (1995) Fast parallel algorithms for short-​range molecular dynamics. J Comput Phys 117:1 http://lammps.sandia.gov
  10. 10.
    Brown WM, Wang P, Plimpton SJ, Tharrington AN (2011) Implementing molecular dynamics on hybrid high performance computers - short range forces. Comp Phys Comm 182:898Google Scholar
  11. 11.
    Brown WM, Kohlmeyer A, Plimpton SJ, Tharrington AN (2012) Implementing molecular dynamics on hybrid high performance computers - Particle-​particle particle-​mesh. Comp Phys Comm 183:449Google Scholar
  12. 12.
    Brown WM, Masako Y (2013) Implementing molecular dynamics on hybrid high performance computers-​Three-​body potentials. Comp Phys Comm 184:2785Google Scholar
  13. 13.
    Bayly CI, Cieplak P, Cornell W, Kollmann PA (1993) A well-​behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269 Google Scholar
  14. 14.
    Cygan RT, Liang J-J, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255Google Scholar
  15. 15.
    Dietrich H, Scheiner S, Portilla L, Zahn D, Halik M (2015) Improving the performance of organic thin-film transistors by ion doping of ethylene-glycol-​based self-​assembled monolayer hybrid dielectrics. Adv Mater 27:8023Google Scholar
  16. 16.
    Dietrich H, Schmaltz T, Halik M, Zahn D (2017) Molecular dynamics simulations of phosphonic acid-​aluminum oxide self-​organization and their evolution into ordered monolayers. Phys Chem Chem Phys 19:5137Google Scholar
  17. 17.
    Meltzer C, Paul J, Dietrich H, Jäger CM, Clark T, Zahn D, Braunschweig B, Peukert W (2014) Indentation and self-​healing mechanisms of a self-​assembled monolayer-a combined experimental and modeling study. J Am Chem Soc 136:10718 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische Chemie / Computer Chemie CentrumFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations