Advertisement

Understanding the nature of bonding interactions in the carbonic acid dimers

  • Andy D. Zapata–Escobar
  • Juliana Andrea Murillo–López
  • C. Z. Hadad
  • Albeiro RestrepoEmail author
Original Paper
  • 42 Downloads

Abstract

Carbonic acid dimer, (CA)2, (H2CO3)2, helps to explain the existence of this acid as a stable species, different to a simple sum between carbon dioxide and water. Five distinct, well characterized types of intermolecular interactions contribute to the stabilization of the dimers, namely, C=O⋯H–O, H–O⋯H–O, C=O⋯C=O, C=O⋯O–H, and C–O⋯O–H. In many cases, the stabilizing hydrogen bonds are of at least the same strength as in the water dimer. We dissect the nature of intermolecular interactions and assess their influence on stability. For a set of 40 (H2CO3)2 isomers, C=O⋯H–O hydrogen bonds between the carbonyl oxygen in one CA molecule and the acidic hydrogen in the hydroxyl group at a second CA molecule are the major stabilizing factors because they exhibit the shortest interaction distances, the largest orbital interaction energies, and the largest accumulation of electron densities around the corresponding bond critical points. In most cases, these are closed-shell hydrogen bonds, however, in a few instances, some covalent character is induced. Bifurcated hydrogen bonds are a common occurrence in the dimers of carbonic acid, resulting in a complex picture with multiple orbital interactions of various strengths. Two anti–anti monomers interacting via the strongest C=O⋯H–O hydrogen bonds are the ingredients for the formation of the lowest energy dimers.

Graphical Abstract

Carbonic acid dimer, (CA)2, (H2CO3)2, helps explaining the existence of this acid as a stable species, different to a simple sum between carbon dioxide and water. Five distinct, well-characterized types of intermolecular interactions contribute to the stabilization of the dimers, namely, C=O⋯H–O, H–O⋯O–H, C=O⋯C=O, C=O⋯O–C, and C–O⋯O–C. In many cases, the stabilizing hydrogen bonds are of at least the same strength as in the water dimer.

Keywords

Carbonic acid QTAIM NBOs Hydrogen bonds Bifurcated bonds 

Abbreviations

QTAIM:

Quantum theory of atoms in molecules.

BCPs:

Bond critical points.

NBOs:

Natural bond orbitals

Notes

Acknowledgements

Financial support for this project by Colciencias via project 111571249844, contract 378–2016 is acknowledged. J.M. acknowledges CONICYT for her postdoctoral Project FONDECYT/Postdoctorado-2015 No. 3150041.

Funding Information

Colciencias, Colombia: Project 111571249844, contract 378–2016. Conicyt, Chile: Fondecyt project, Postdoctorado–2015 No. 3150041.

Supplementary material

894_2018_3907_MOESM1_ESM.pdf (117 kb)
(PDF 117 KB)

References

  1. 1.
    Terlouw J, Lebrilla C, Schwarz H (1987) Angew Chem Int Ed Engl 26:354CrossRefGoogle Scholar
  2. 2.
    Hage W, Liedl K, Hallbrucker A (1998) E Mayer Sci 279:1332Google Scholar
  3. 3.
    Hage W, Hallbrucker A, Mayer E (1993) J Am Chem Soc 115:8427CrossRefGoogle Scholar
  4. 4.
    Liedl K, Sekušak S, Mayer E (1997) J Am Chem Soc 119:3782CrossRefGoogle Scholar
  5. 5.
    Loerting T, Tautermann CS, Kroemer R, Kohl I, Hallbrucker A, Mayer E, Liedl K (2000) Angew Chem Int Ed Engl 39:891CrossRefGoogle Scholar
  6. 6.
    Al-Hosney H, Grassian V (2004) J Am Chem Soc 126:8068CrossRefGoogle Scholar
  7. 7.
    Al-Hosney H, Grassian V (2005) Phys Chem Chem Phys 7:1266CrossRefGoogle Scholar
  8. 8.
    Moore M, Khanna R (1991) Spectrochim Acta Part A 47A:255CrossRefGoogle Scholar
  9. 9.
    Breg J, Tymoczko J, Stryer L, Biochemistry WH (2002) 5th edn. Freeman and company, New YorkGoogle Scholar
  10. 10.
    Lindskog S, Coleman JE (1973) Proc Natl Acad Sci USA 70:2505CrossRefGoogle Scholar
  11. 11.
    Kern DM (1960) J Chem Educ 37:14CrossRefGoogle Scholar
  12. 12.
    Fisher S, Maupin C, Budayova–Spano M, Govindasamy L, Tu C, Agbandje-Mckenna M, Silverman D, Voth G, McKenna R (2007) Biochemistry 46:2930CrossRefGoogle Scholar
  13. 13.
    Thoms S (2002) J Theor Biol 215:399CrossRefGoogle Scholar
  14. 14.
    Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T, Kozyr A, Ono T, Rios AF (2004) Science 305:367CrossRefGoogle Scholar
  15. 15.
    Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Nature 437:681CrossRefGoogle Scholar
  16. 16.
    Dore J, Lukas R, Sadler W, Church M, Karl D (2235) Proc Natl Acad Sci USA 106(1):2009Google Scholar
  17. 17.
    Kim S, Minh Y, Hyung S, Kim Y, van Dishoeck E, van der Tak F (2000) High-Resolution Optical and Infrared Observations of Molecules in Comets: Chemistry in the Envelopes around Massive Young Stars from Molecular Clouds to Planetary, pp 471Google Scholar
  18. 18.
    Ehrenfreund PW, Schutte W (2000) Infrared Observations of Interstellar Ices, from Molecular Clouds to Planetary, pp 135Google Scholar
  19. 19.
    Longhi J (2006) J Geophys Res 111:E06011CrossRefGoogle Scholar
  20. 20.
    Strazzulla G, Brucato JR, Cimino G, Palumbo ME (1996) Planet Space Sci 44:1447CrossRefGoogle Scholar
  21. 21.
    Mason N et al (2006) VUV Spectroscopy of extraterrestrial ices, Astrochemistry-from Laboratory Studies to Astronomical Observations, pp 128Google Scholar
  22. 22.
    Ghoshal S, Hazra MK (2015) RSC Adv 5:17623CrossRefGoogle Scholar
  23. 23.
    Chebbi A, Carlier P (1996) Atmos Environ 30:4233CrossRefGoogle Scholar
  24. 24.
    Wight C, Boldyrev A (2125) J Phys Chem 99(1):1995Google Scholar
  25. 25.
    Tossell J (2006) Inorg Chem 45:5961CrossRefGoogle Scholar
  26. 26.
    de Marothy SA (2013) Int J Quantum Chem 113:2306CrossRefGoogle Scholar
  27. 27.
    Ghoshal S, Hazra MK (2014) J Phys Chem A 118:2385CrossRefGoogle Scholar
  28. 28.
    Kumar M, Busch DH, Subramaniam B, Thompson WH (2014) J Phys Chem A 118:5020CrossRefGoogle Scholar
  29. 29.
    Mitterdorfer C, Bernard J, Klauser F, Winkel K, Kohl I, Liedl K, Grothe H, Mayer E, Loerting T (2012) J Raman Spectrosc 43:108CrossRefGoogle Scholar
  30. 30.
    Winkel K, Hage W, Loerting T, Price S, Mayer E (2007) J Am Chem Soc 129:13863CrossRefGoogle Scholar
  31. 31.
    Ballone P, Montanari B, Jones R (2000) J Chem Phys 112:6571CrossRefGoogle Scholar
  32. 32.
    Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963CrossRefGoogle Scholar
  33. 33.
    Ghoshal S, Hazra MK (2014) J Phys Chem A 118:4620CrossRefGoogle Scholar
  34. 34.
    Tautermann CS, Voegele AF, Liedl K (2004) J Chem Phys 120:631CrossRefGoogle Scholar
  35. 35.
    Nguyen M, Matus M, Jackson V, Ngan V, Rustad J, Dixon D (2008) J Phys Chem A 112:10386CrossRefGoogle Scholar
  36. 36.
    Tossell J (2009) Environ Sci Technol 43:2575CrossRefGoogle Scholar
  37. 37.
    Bader R (1990) Atoms in molecules. a quantum theory. Oxford University Press, NYGoogle Scholar
  38. 38.
    Weinhold F, Landis CR (2012) Discovering Chemistry wit Natural Bond Orbitals. WileyGoogle Scholar
  39. 39.
    Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88(6):89CrossRefGoogle Scholar
  40. 40.
    Reed A, Weinhold F (1983) J Chem Phys 78:4066CrossRefGoogle Scholar
  41. 41.
    Farfán P, Echeverri A, Diaz E, Tapia J, Gómez S, Restrepo A (2017) J Chem Phys 147:044312CrossRefGoogle Scholar
  42. 42.
    Salazar J, Guevara A, Vargas R, Restrepo A, Garza J (2016) Phys Chem Chem Phys 18:23508CrossRefGoogle Scholar
  43. 43.
    Pérez J, Hadad C, Restrepo A (2008) Intl J Quantum Chem 108:1653CrossRefGoogle Scholar
  44. 44.
    Ramírez F, Hadad C, Guerra D, David J, Restrepo A (2011) Chem Phys Lett 507:229CrossRefGoogle Scholar
  45. 45.
    Hincapié G, Acelas N, Castano M, David J, Restrepo A (2010) J Phys Chem A 114:7809CrossRefGoogle Scholar
  46. 46.
    Acelas N, Hincapié G, Guerra D, David J, Restrepo A (2013) J Chem Phys 139:044310CrossRefGoogle Scholar
  47. 47.
    Jenkins S, Restrepo A, David J, Yin D, Kirk SR (1644) Phys Chem Chem Phys 13(1):2011Google Scholar
  48. 48.
    Hadad C, Restrepo A, Jenkins S, Ramírez F, David J (2013) Theor Chem Acc 132:1376CrossRefGoogle Scholar
  49. 49.
    Hadad C, Florez E, Acelas N, Merino G, Restrepo A (2018) Int J Quantum Chem 119(2).  https://doi.org/10.1002/qua.25766
  50. 50.
    Yepes D, Kirk SR, Jenkins S, Restrepo A (2012) J Mol Model 18:4171CrossRefGoogle Scholar
  51. 51.
    David J, Guerra D, Restrepo A (2012) Chem Phys Lett 64:539–540Google Scholar
  52. 52.
    Giraldo C, Gómez S, Weinhold F, Restrepo A (2016) Chem Phys Chem 17:2022CrossRefGoogle Scholar
  53. 53.
    Gomez S, Guerra D, López JG, Toro–Labbé A, Restrepo A (2013) J Phys Chem A 117:1991CrossRefGoogle Scholar
  54. 54.
    Mutlay I, Restrepo A (2015) Phys Chem Chem Phys 17:7972CrossRefGoogle Scholar
  55. 55.
    Rengifo E, Gómez S, Arce J, Weinhold F, Restrepo A (2018) Comp Theor Chem 1130:58CrossRefGoogle Scholar
  56. 56.
    Reed A, Weinhold F (1983) J Chem Phys 78:4066CrossRefGoogle Scholar
  57. 57.
    Reed A, Curtiss L, Weinhold F (1998) Chem Rev 88:899CrossRefGoogle Scholar
  58. 58.
    Weinhold F, Klein R (2014) Angew Chem Intl Ed 53:11214CrossRefGoogle Scholar
  59. 59.
    Grabowski SJ (2011) J Chem Rev 111:2597CrossRefGoogle Scholar
  60. 60.
    Knop O, Boyd R, Choi S (1998) J Am Chem Soc 110:7299CrossRefGoogle Scholar
  61. 61.
    Alkorta I, Rozas I, Elguero J (1998) Struct Chem 9:243CrossRefGoogle Scholar
  62. 62.
    Keith T (2013) AIMALL version 13.05.06. http://aim.tkgristmill.com/
  63. 63.
    Espinosa E, Alkorta I, Elguero J, Mollins E (2002) J Chem Phys 117:5529CrossRefGoogle Scholar
  64. 64.
    Romero–Montalvo E, Guevara–Vela J, Vallejo W, Costales A, Martin A, Rodríguez M, Rocha–Rinza T (2017) Chem Comm 53:3516CrossRefGoogle Scholar
  65. 65.
    Guevara–Vela J, Romero–Montalvo E, del Rio–Lima A, Martin A, Hernández–Rodríguez M, Rocha–Rinza T (2017) Chem Eur J 21:16605CrossRefGoogle Scholar
  66. 66.
    Duarte V, Rocha–Rinza T, Cuevas G (2015) J Comp Chem 36:361CrossRefGoogle Scholar
  67. 67.
    Guevara–Vela J, Romero–Montalvo E, Mora V, Chávez–Calvillo R, García–Revilla M, Francisco E, Martin A, Rocha–Rinza T (2016) Phys Chem Chem Phys 18:19557CrossRefGoogle Scholar
  68. 68.
    Guevara–Vela J, Romero–Montalvo E, Costales A, Martin A, Rocha–Rinza T (2016) Phys Chem Chem Phys 18:26383CrossRefGoogle Scholar
  69. 69.
    Guevara–Vela J, Chávez–Calvillo R, García–Revilla M, Hernández–Trujillo J, Christiansen O, Francisco E, Martin A, Rocha–Rinza T (2013) Chem Eur J 19:14304CrossRefGoogle Scholar
  70. 70.
    Lane J, Contreras–García J, Piquemal J, Miller B, Kjaergaard H (2013) J Chem Theor Comp 9:3263CrossRefGoogle Scholar
  71. 71.
    Blanco M, Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096CrossRefGoogle Scholar
  72. 72.
    Pendás A, Francisco E, Blanco M, Gatti C (2007) Chem Eur J 13:9362CrossRefGoogle Scholar
  73. 73.
    Eskandari K, Val Alsenoy CJ (2014) Comp Chem 35:1883CrossRefGoogle Scholar
  74. 74.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox Dj (2013) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  75. 75.
    NBO 6.0, Glendening ED, Badenhoop JK, Reed A, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) Theoretical Chemistry Institute. University of Wisconsin, Madison. http://nbo6.chem.wisc.edu/ Google Scholar
  76. 76.
    Jackson J (1998) Electrodynamics, 3rd edn. Classical Wiley, New YorkGoogle Scholar
  77. 77.
    Knop O, Rankin K, Boyd R (2001) J Phys Chem A 105:6552CrossRefGoogle Scholar
  78. 78.
    Knop O, Rankin K, Boyd R (2003) J Phys Chem A 107:272CrossRefGoogle Scholar
  79. 79.
    Bader R, Essen H (1984) J Chem Phys 80:1943CrossRefGoogle Scholar
  80. 80.
    Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  81. 81.
    Reed A, Weinhold F (1983) J Chem Phys 78:4066CrossRefGoogle Scholar
  82. 82.
    Feldblum E, Arkin I (2014) Proc Natl Acad Sci 111:4085CrossRefGoogle Scholar
  83. 83.
    Rozas I, Alkorta I, Elguero J (1998) J Phys Chem A 102:9925CrossRefGoogle Scholar
  84. 84.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andy D. Zapata–Escobar
    • 1
  • Juliana Andrea Murillo–López
    • 2
  • C. Z. Hadad
    • 1
  • Albeiro Restrepo
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Departamento de Ciencias Químicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile

Personalised recommendations