Advertisement

Fullerene-like boron nitride cages BxNy (x + y = 28): stabilities and electronic properties from density functional theory computation

  • A. Rodríguez Juárez
  • M. Salazar Villanueva
  • D. Cortés-Arriagada
  • E. Chigo AnotaEmail author
Original Paper
  • 25 Downloads

Abstract

Computations based on density functional theory (DFT) were performed to get insights into the structural stability, electronic, and magnetic properties of fullerene-like boron nitride cages (f-like BNCs) for different BxNy chemical stoichiometry (x + y = 28). The results reveal at least metastable nanostructures for anionic charge (Q = −1) and doublet state (M = 2); furthermore, a magnetic moment of 1.0 bohr magneton is associated with them. These systems, in general, have high chemical stability due to their large values of cohesion energy, and the structural stability was corroborated by means of vibrational calculations. According to quantum descriptors, they exhibit high polarity (except to B27N and B28 systems), low average chemical reactivity and average work function, and electronic behavior like semiconductors. Therefore, the properties of these systems are improved compared to the B28 system, and thus the nonstoichiometry fullerenes can be used for more applications than the pristine one.

Keywords

Fullerene-like boron nitride Stability Magnetism DFT theory 

Notes

Acknowledgments

This work was partially supported by VIEP-BUAP (Grant: CHAE-ING18-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177) and Red Internacional para el estudio de sistemas híbridos grafeno-fullereno (Conricyt-RED170303). We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP.

Supplementary material

894_2018_3902_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22.4 kb)

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163.  https://doi.org/10.1038/318162a0. CrossRefGoogle Scholar
  2. 2.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358.  https://doi.org/10.1038/347354a0 CrossRefGoogle Scholar
  3. 3.
    Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pattanayak J, Kar T, Scheinr S (2002) Boron−nitrogen (BN) substitution of fullerenes: C60 to C12B24N24 CBN ball. J Phys Chem A 106:2970–2978.  https://doi.org/10.1021/jp013904v. CrossRefGoogle Scholar
  5. 5.
    Yee KA, Yi H, Lee S, Kang SK, Song JS, Seong S (2003) The electronic structure and stability of the heterofullerene:C(60-2x)(BN)x. Bull Kor Chem Soc 24:494–498.  https://doi.org/10.5012/bkcs.2003.24.4.494 CrossRefGoogle Scholar
  6. 6.
    Kar T, Pattanayak J, Scheiner S (2003) Rules for BN-substitution in BCN−fullerenes. Separation of BN and C domains. J Phys Chem A 107:8630–8637.  https://doi.org/10.1021/jp035744o CrossRefGoogle Scholar
  7. 7.
    Stéphan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998) Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl Phys A Mater Sci Process 67:107–111.  https://doi.org/10.1007/s003390050745 CrossRefGoogle Scholar
  8. 8.
    Golberg D, Bando Y, Stéphan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl Phys Lett 73:2441–2443.  https://doi.org/10.1063/1.122475 CrossRefGoogle Scholar
  9. 9.
    Kawai J, Muramatsu Y, Kobayashi M, Higashi I, Adachi H (1993) Discrete-variational Hartree–Fock–slater calculations of B36N24 with comparison to C60, jap. J Appl Phys 10:72–77Google Scholar
  10. 10.
    Bardo RD, Stanton CT, Jones WH (1995) Predicted structures of precursors B4N6H8, B4N8H8, and B4N8H6 and the B24N36 analog of C60. Inorg Chem 34:1271–1272.  https://doi.org/10.1021/ic00109a039 CrossRefGoogle Scholar
  11. 11.
    Chigo Anota E, Escobedo Morales A, Hernández Cocoletzi H, López y López JG (2015) Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: structural stability, physicochemistry and drug delivery perspectives. Phys E 74:538–543.  https://doi.org/10.1016/j.physe.2015.08.008 CrossRefGoogle Scholar
  12. 12.
    Ösawa S, Harada M, Ösawa E, Kiran B, Jemmis ED (1995) (SiC)60′ an Indealized inverse Superatom? Fuller Sci Technol 3:225–239.  https://doi.org/10.1080/153638X9508543780 CrossRefGoogle Scholar
  13. 13.
    Harada M, Osawa S, Osawa E, Jemmis ED (1994) Silicon-coated fullerenes, (SiC)n, n = 20 to 60. Preliminary evaluation of a new class of heterofullerenes. Chem Lett 23:1037–1040.  https://doi.org/10.1246/cl.1994.1037 CrossRefGoogle Scholar
  14. 14.
    Huda MN (2014) SiC nanostructures from a theoretical perspective. Rev Nanosci Nanotechnol 3:88–10.  https://doi.org/10.1166/rnn.2014.1046 CrossRefGoogle Scholar
  15. 15.
    Li F, Xia Y, Zhao M, Liu X, Huang B, Ji Y, Song C (2007) Theoretical study of hydrogen atom adsorbed on carbon-doped BN nanotubes. Chem Phys Lett 442:384–389.  https://doi.org/10.1016/j.physleta.2006.04.100. CrossRefGoogle Scholar
  16. 16.
    Matsubara M, Massobrio C (2006) First principles study of extensive doping of C60 with silicon. Mat Sci Eng C 26:1224–1227.  https://doi.org/10.1016/j.msec.2005.09.091 CrossRefGoogle Scholar
  17. 17.
    Pellarin M, Ray C, Lermé J, Vialle JL, Broyer M, Blase X, Kéghélian P, Mélinon P, Perez A (1999) Photolysis experiments on SiC mixed clusters: from silicon carbide clusters to silicon doped fullerenes. J Chem Phys 110:6927–6938.  https://doi.org/10.1063/1.478598 CrossRefGoogle Scholar
  18. 18.
    Li J, Xia Y, Zhao M, Liu X, Song C, Li J, Li F (2008) From pure 60 C to silicon carbon fullerene-based nanotube: an ab initio study. J Chem Phys 128(154719):1–8.  https://doi.org/10.1063/1.2903433 CrossRefGoogle Scholar
  19. 19.
    Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998) Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl Phys A Mater Sci Process 67:107–111.  https://doi.org/10.1007/s003390050745. CrossRefGoogle Scholar
  20. 20.
    Golberg D, Bando Y, Stephan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. App Phys Lett 73:2441–2443.  https://doi.org/10.1063/1.122475 CrossRefGoogle Scholar
  21. 21.
    Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mat 5:635–638.  https://doi.org/10.1016/j.stam.2004.03.017 CrossRefGoogle Scholar
  22. 22.
    Feng S, Zhang H, Yan T, Hung D, Zhi C, Nakanishi H, Gao XD (2016) Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs. Int J Nanomedicine 11:4573–4582.  https://doi.org/10.2147/IJN.S110689 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW (2010) Defect functionalization of hexagonal boron nitride Nanosheets. J Phys Chem C 114(41):17434–17439.  https://doi.org/10.1021/jp105454w CrossRefGoogle Scholar
  24. 24.
    Li X, Wang X, Zhang J, Hanagata N, Wang X, Weng O, Ito A, Bando Y, Golberg D (2017) Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat Commun 8:13936.  https://doi.org/10.1038/ncomms13936 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, JapanCrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  27. 27.
    Fowler PW, Austin SJ, Sandall JPB (1993) The tetravalance of C28. J Chem Soc Perkin Trans 2:795CrossRefGoogle Scholar
  28. 28.
    Makurin YN, Sofronov AA, Gusev AI, Ivanovsky AL (2001) Electronic structure and chemical stabilization of C28 fullerene. Chem Phys 270:293–308.  https://doi.org/10.1016/S0301-0104(01)00342-1 CrossRefGoogle Scholar
  29. 29.
    Heyd J, Scuseria G (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened coulomb hybrid functional. J Chem Phys 121:1187–1192.  https://doi.org/10.1063/1.1760074 CrossRefPubMedGoogle Scholar
  30. 30.
    Castro M, Chigo Anota E (2014) BN and BN oxide nanosheets based nanosensor for paracetamol adsorption: a density functional investigation Mex. J Mat Sci Eng 1(1):21–29Google Scholar
  31. 31.
    Chigo Anota E, Tlapale Y, Salazar Villanueva M, Rivera Márquez JA (2015). J Mol Model 21:215–220CrossRefGoogle Scholar
  32. 32.
    Rabenau T, Simon A, Kremer RK, Sohmen E (1993) The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Z Phys B 90:69–72.  https://doi.org/10.1007/BF01321034 CrossRefGoogle Scholar
  33. 33.
    Chaban VV, Fileti EE (2015) Strong electronic polarization of the C60 fullerene by imidazolium-based ionic liquids: accurate insights from born–Oppenheimer molecular dynamic simulations. Phys Chem Chem Phys 17:15739–15745.  https://doi.org/10.1039/C5CP00350D CrossRefPubMedGoogle Scholar
  34. 34.
    Sabirov DS, Bulgakov RG (2011) Reactivity of fullerenes family towards radicals in terms of local curvature. Comp Theor Chem 963:185–190.  https://doi.org/10.1016/j.comptc.2010.10.016 CrossRefGoogle Scholar
  35. 35.
    Chen G, Cooks RG, Corpuz E, Scott LT (1996) Estimation of the electron affinities of C60, corannulene, and coronene by using the kinetic method. J Am Soc Mass Spectrum 7:619–627.  https://doi.org/10.1016/1044-0305(96)85610-8 CrossRefGoogle Scholar
  36. 36.
    de Vries J, Steger H, Kamke B, Menzel C, Weisser B, Kamke W, Hertel IV (1992) Single-photon ionization of C60- and C70-fullerene with synchrotron radiation: determination of the ionization potential of C60. Chem Phys Lett 188:159–162.  https://doi.org/10.1016/0009-2614(92)90001-4
  37. 37.
    Caltaldo F, Graovac A, Milani P (2011) The mathematics and topology fullerenes. Springer, DordrechtGoogle Scholar
  38. 38.
    Guo T, Smalley RE, Scuseria GE (1993) Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn). J Chem Phys 99:352–359.  https://doi.org/10.1063/1.465758 CrossRefGoogle Scholar
  39. 39.
    Zhao J, Huang X, Shi R, Liu H, Su Y, Bruce King R (2015) B28: the smallest all-boron cage from an ab initio global search. Nanoscale 7:15086–15090.  https://doi.org/10.1039/c5nr04034e CrossRefPubMedGoogle Scholar
  40. 40.
    Vergara Reyes HN, Chigo Anota E, Castro M (2018) C60-like boron carbide and carbon nitride fullerenes: stability and electronic properties obtained by DFT methods. Fullerenes Nanotubes Carbon Nanostruct 26(1):52–60.  https://doi.org/10.1080/1536383X.2017.1402006 CrossRefGoogle Scholar
  41. 41.
    Geerlings P, De Proft P, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874.  https://doi.org/10.1021/cr990029p CrossRefPubMedGoogle Scholar
  42. 42.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21(748):1–22.  https://doi.org/10.3390/molecules21060748 CrossRefGoogle Scholar
  43. 43.
    Galvan M, Vela A, Gázquez JL (1988) Chemical reactiviy in spin-polarized density functional theory. J Phys Chem 92:6470–6474CrossRefGoogle Scholar
  44. 44.
    Bergveld P, Hendrikse J, Olthuis W (1998) Theory and application of the material work function for chemical sensors based on the field effect principle. Meas Sci Technol 9:1801–1808.  https://doi.org/10.1088/0957-0233/9/11/003 CrossRefGoogle Scholar
  45. 45.
    Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Top Curr Chem 42:95–170.  https://doi.org/10.1007/3-540-06399-4_6 CrossRefGoogle Scholar
  46. 46.
    Nozaki H, Itoh S (1996) Structural stability of BC2N. J Phys Chem Solids 57:41–49.  https://doi.org/10.1016/0022-3697(95)00088-7 CrossRefGoogle Scholar
  47. 47.
    Zeinalipour-Yazdi CD, Loizidou EZ (2017) Study of the cap structure of (3,3), (4,4) and (5,5)-SWCNTs: application of the sphere-in-contact model. Carbon 115:819–827CrossRefGoogle Scholar
  48. 48.
    Lee CH, Xie M, Kayastha V, Wang J, Yap YK (2010). Chem Mater 22:1782–1787CrossRefGoogle Scholar
  49. 49.
    Pakdel A, Wang XB, Zhi CY, Bando Y, Watanabe K, Sekiguchi T, Nakayama T, Golberg D (2012). J Mater Chem 22:4818–4824CrossRefGoogle Scholar
  50. 50.
    Ci L, Song L, Jin CH, Jariwala D, Wu DX, Li YJ, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010). Nat Mater 9:430–435CrossRefGoogle Scholar
  51. 51.
    Dong H, Lin B, Gilmore K, Hou T, Lee ST, Li Y (2015) Theoretical investigations on SiC2 siligraphene as promising metal-free catalyst for oxygen reduction reaction. J Power Sources 299:371–379.  https://doi.org/10.1016/j.jpowsour.2015.09.014 CrossRefGoogle Scholar
  52. 52.
    Zhao J, Chen Z (2015) Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Phys Chem C 119:26348–26354.  https://doi.org/10.1021/acs.jpcc.5b09037 CrossRefGoogle Scholar
  53. 53.
    Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017) In silico characterization of nitric oxide adsorption on a magnetic [B24N36 fullerene/(TiO2)2]− nanocomposite. Appl Surf Sci 400:283–292.  https://doi.org/10.1016/j.apsusc.2016.12.153 CrossRefGoogle Scholar
  54. 54.
    Haynes WM (2013) CRC handbook of chemistry and physics, 94th edn. CRC, Boca RatonGoogle Scholar
  55. 55.
    Barone V, Peralta JE (2008) Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett 8:2210–2214.  https://doi.org/10.1021/nl080745j. CrossRefPubMedGoogle Scholar
  56. 56.
    Hao S, Zhou G, Duan W, Wu J, Gu BL (2006) Tremendous spin-splitting effects in open boron nitride nanotubes. Application to nanoscale spintronic devices. J Am Chem Soc 128:8453–8458.  https://doi.org/10.1021/ja057420e CrossRefPubMedGoogle Scholar
  57. 57.
    Wu Y, Sun Z, Chen H, Liu X (2017) A simple method to prepare boron spheres in Cu alloy. Mater Lett 205:24–27.  https://doi.org/10.1016/j.matlet.2017.06.042 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Rodríguez Juárez
    • 1
  • M. Salazar Villanueva
    • 2
  • D. Cortés-Arriagada
    • 3
  • E. Chigo Anota
    • 4
    Email author
  1. 1.Predio Cristo Rey Ex-hacienda de Xalostoc Carretera ApizacoInstituto Tecnológico Superior de TlaxcoTlaxcalaMexico
  2. 2.Benemérita Universidad Autónoma de Puebla, Facultad de IngenieríaPueblaMexico
  3. 3.Universidad Tecnológica Metropolitana-Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónSan JoaquínChile
  4. 4.Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería QuímicaCiudad UniversitariaPueblaMexico

Personalised recommendations