Advertisement

Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes

  • Jorge Alfonso Arvayo-Zatarain
  • Fernando Favela-Rosales
  • Claudio Contreras-Aburto
  • Efrain Urrutia-Bañuelos
  • Amir Maldonado
Original Paper
  • 68 Downloads

Abstract

We report results of a molecular dynamics simulation study of the effect of one general anesthetic, halothane, on some properties of mixed DPPC/DPPE phospholipid membranes. This is a suitable model for the study of simple, two-phospholipid membrane systems. From the simulation runs, we determined several membrane properties for five different molecular proportions of DPPC/DPPE. The effect of halothane on the studied membrane properties (area per lipid molecule, density of membrane, order parameter, etc.) was rather small. The distribution of halothane is not uniform through the bilayer thickness. Instead, there is a maximum of anesthetic concentration around 1.2 nm from the center of the membrane. The anesthetic molecule is located close to the phospholipid headgroups. The position of the halothane density maximum depends slightly on the DPPC/DPPE molar proportion. Snapshots taken over the plane of the membrane, as well as calculated two-dimensional radial distribution functions show that the anesthetic has no preference for either phospholipid (DPPC or DPPE). Our results indicate that this anesthetic molecule has only small effects on DPPC/DPPE mixed membranes. In addition, halothane displays no preferential location around DPPC or DPPE. This is probably due to the hydrophobic nature of halothane and to the fact that the chosen phospholipids have the same hydrophobic tails.

Keywords

Phospholipid membranes Molecular dynamics Anesthetic Halotane 

Notes

Acknowledgments

This work was partially funded by Consejo Nacional de Ciencia y Tecnología–México (Conacyt; grant 256753). J.A.A.-Z. acknowledges Conacyt for a graduate fellowship. F.F.R. acknowledges Instituto Tecnológico Superior Zacatecas Occidente (ITSZO) and Dirección General de Asuntos del Personal Académico (DGAPA) Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) IG100416 for financial support and Clúster Híbrido de Supercómputo Xiuhcoatl-CINVESTAV (Centro de Investigación y de Estudios Avanzados) and Miztli-Dirección de Cómputo y de Tecnologías de Información y Comunicación (DGTIC)-Universidad Nacional Autónoma de México (UNAM) (Project LANCAD-UNAM-DGTIC-028) facilities for computing-time allocation. C.C.A. acknowledges the Mexican Ministry of Education for support through the PRODEP program "Apoyo a la Incorporación de Nuevo PTC". We thank ACARUS-Unison for access to computing facilities.

Supplementary material

894_2018_3890_MOESM1_ESM.docx (1.2 mb)
Fig. S1a–e Snapshots of DPPC:DPPE membranes without anesthetic. Phospholipid molar proportions: a 100:0, b 0:100, c 50:50, d 75:25, e 25:75. Molecules: Red DPPC, green DPPE, blue water. (DOCX 1234 kb)
894_2018_3890_MOESM2_ESM.docx (473 kb)
Fig. S2 Total density (solid line) and halothane density (dot-dashed line) for a 0:100 DPPC:DPPE membrane. The halothane density curve has been shifted in order to match the edges of both graphs. (DOCX 473 kb)
894_2018_3890_MOESM3_ESM.docx (23 kb)
Fig. S3 Total density (solid line) and halothane density (dot-dashed line) for a 25:75 DPPC:DPPE membrane. The halothane density curve has been shifted in order to match the edges of both graphs. (DOCX 23 kb)
894_2018_3890_MOESM4_ESM.docx (23 kb)
Fig. S4 Total density (solid line) and halothane density (dot-dashed line) for a 75:25 DPPC:DPPE membrane. The halothane density curve has been shifted in order to match the edges of both graphs. (DOCX 23 kb)
894_2018_3890_MOESM5_ESM.docx (23 kb)
Fig. S5 Total density (solid line) and halothane density (dot-dashed line) for a 100:0 DPPC:DPPE membrane. The halothane density curve has been shifted in order to match the edges of both graphs. (DOCX 23 kb)
894_2018_3890_MOESM6_ESM.docx (23 kb)
Fig. S6a,b Topviews of snapshots for DPPC:DPPE membranes with halothane. Phospholipid molar proportions: a 100:0, b 0:100. Molecules: Red DPPC, green DPPE, black halothane. (DOCX 23 kb)

References

  1. 1.
    Arcario MJ, Mayne CG, Tajkhoorshid E (2017) A membrane-embedded pathway delivers general anesthetics to two intteracting binding sites in the Gloeobacter violaceus ion channel. J Biol Chem 292:9480–9492CrossRefGoogle Scholar
  2. 2.
    Saaedi M, Lyubarstev A, Jallil S (2017) Anesthetics mechanism on a DMPC lipid membrane model: insights from molecular dynamics simulations. Biophys Chem 226:1–13CrossRefGoogle Scholar
  3. 3.
    Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhalated anesthetics. N Engl J Med 348:2110–2124CrossRefGoogle Scholar
  4. 4.
    Durga P, Yalamanchili V (2016) Basic celular and molecular mechanisms of anesthetic induced developmental neurotoxicity: potential strategies for alleviation. J Neuroanaesthesiol Crit Care 3:15–24CrossRefGoogle Scholar
  5. 5.
    WHO (2009) WHO model formulary 2008. World Health Organization, Geneva. http://apps.who.int/medicinedocs/documents/s16879e/s16879e.pdf. Accessed 25 May 2018
  6. 6.
    Fábián B, Darvas M, Picaud S, Sega M, Jedlovszky P (2015) The effect of anaesthetics on the properties of a lipid membrane in the biologically relevant phase: a computer simulation study. Phys Chem Chem Phys 17:14750–14760CrossRefGoogle Scholar
  7. 7.
    Darvas M, Hoang PN, Picaud S, Sega M, Jedlovszky P (2012) Anesthetic molecules embedded in a lipid membrane: a computer simulation study. Phys Chem Chem Phys 14:12956–12969CrossRefGoogle Scholar
  8. 8.
    Koubi L, Tarke M, Klein M, Scharpf D (2000) Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J 78:800–811CrossRefGoogle Scholar
  9. 9.
    Oh KJ, Klein M (2009) Effects of halothane on Dimyristoylphosphatidylcholine lipid bilayer structure: a molecular dynamics simulation study. Bull Korean Chem Soc 30:2087–2092CrossRefGoogle Scholar
  10. 10.
    Mojumdar EH, Lyubartsev AP (2010) Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. Biophys Chem 153:27–35CrossRefGoogle Scholar
  11. 11.
    Leekumjorn S, Sum AK (2006) Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys J 90:3951–3965CrossRefGoogle Scholar
  12. 12.
    Blume A, Wittebort RJ, Das Gupta SK, Griffin RG (1982) Phase equilibria, molecular conformation, and dynamics in phosphatidylcholine phosphatidylethanolamine bilayers. Biochemistry 21:6243–6253CrossRefGoogle Scholar
  13. 13.
    van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124(1):5–8CrossRefGoogle Scholar
  14. 14.
    Yeagle PL (ed) (2005) The structure of biological membranes2nd edn. CRC, Boca RatonGoogle Scholar
  15. 15.
    Furse S, de Kroon AIPM (2015) Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol 32(4):117–119CrossRefGoogle Scholar
  16. 16.
    Porasso DR, Drew Bennett WF, Oliveira-Costa SD, López JJ (2009) Cascales study of the benzocaine transfer from aqueous solution to the interior of a biological membrane. J Phys Chem B 113:9988–9994CrossRefGoogle Scholar
  17. 17.
    McCarthy NLC, Brooks NJ, Tyler AII, ElGamacy M, Welche PRL, Payne MC, Chau P-L (2017) A combined X-ray scattering and simulation study of halothane in membranes at raised pressures. Chem Phys Lett 671:21–27CrossRefGoogle Scholar
  18. 18.
    Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anaesthetics: an X-ray and neutron diffraction study. J Mol Biol 133:469–500CrossRefGoogle Scholar
  19. 19.
    Tu K, Tarek M, Klein ML, Scharf D (1998) Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys J 75:2123–2134CrossRefGoogle Scholar
  20. 20.
    Essex JW, Hann M, Richards WG (1994) Molecular dynamics simulation of a hydrated phospholipid bilayer. Philos Trans R Soc B 344:239–260CrossRefGoogle Scholar
  21. 21.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  22. 22.
    Miyamoto S, Kollman PA (1992) SETTLE—an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962CrossRefGoogle Scholar
  23. 23.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, OxfordGoogle Scholar
  24. 24.
    Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  25. 25.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  26. 26.
    Reißer S, Poger D, Stroet M, Mark AE (2017) Real cost of speed: the effect of a time-saving multiple-time-stepping algorithm on the accuracy of molecular dynamics simulations. J Chem Theory Comput 13:2367–2372CrossRefGoogle Scholar
  27. 27.
    Petrov AG, Gawrisch K, Brezesinski G, Klose G, Mops A (1982) Optical detection of phase transitions in simple and mixed lipidwater phases. Biochim Biophys Acta Biomembr 690:1–7CrossRefGoogle Scholar
  28. 28.
    Janiak MJ, Small DM, Shipley GG (1976) Nature of the thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry 15:4575–4580CrossRefGoogle Scholar
  29. 29.
    Martínez-Seara H, Róg T (2013) Molecular dynamics simulations of lipid bilayers: simple recipe of how to do it. Methods Mol Biol 924:407–429CrossRefGoogle Scholar
  30. 30.
    Vermeer LS, de Groot BL (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36:919–931CrossRefGoogle Scholar
  31. 31.
    Fábián B, Sega M, Voloshin VP, Medvedev NN, Jedlovszky P (2017) Lateral pressure profile and free volume properties in phospholipid membranes containing anesthetics. J Phys Chem B 121:2814–2824CrossRefGoogle Scholar
  32. 32.
    Pickholz M, Saiz L, Klein ML (2005) Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach. Biophys J 88:1524–1534CrossRefGoogle Scholar
  33. 33.
    Vemparala S, Saiz L, Eckenhoff RG, Klein ML (2006) Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles. Biophys J 91:2815–2825CrossRefGoogle Scholar
  34. 34.
    Weinrich M, Nanda H, Worcester DL, Majkrzak CF, Bezrukov SM (2012) Halothane changes the domain structure of a binary lipid membrane. Langmuir 28:4723–4728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Posgrado en MaterialesUniversidad de SonoraHermosilloMexico
  2. 2.Departamento de InvestigaciónInstituto Tecnológico Superior Zacatecas OccidenteSombrereteMexico
  3. 3.Facultad de Ciencias en Física y MatemáticasUniversidad Autónoma de ChiapasTuxtla GutiérrezMexico
  4. 4.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  5. 5.Departamento de FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations