Advertisement

Does the stability of the stacking motif surpass the planar motif in 2-amino-4-nitrophenol? — a CCSD(T) analysis

  • Palanisamy DeepaEmail author
Original Paper
  • 58 Downloads

Abstract

In this work we analyzed O-H...O, O-H...N, and N-H...O contacts existing in the 2-amino-4-nitrophenol structure engaged in ANP molecules through quantum chemical methods. Furthermore, the above contacts were favored to comprehensively understand the stability of noncovalent interactions, π stacking and hydrogen bonding, surviving in 2-amino-4-nitrophenol. The geometries of π stacking and hydrogen bond interactions between two 2-amino-4-nitrophenols were optimized at BLYP-D3/def2-QZVP with dispersion 3 and MP2/cc-pVTZ levels of theory, and their stability was compared using the CCSD(T) interaction energies. The analyses predicted a particularly strong π stacking interaction of 2-amino-4-nitrophenol with hydrogen bond due to the narrow equivalent configuration of NO2 interactions with the other 2-amino-4-nitrophenols. Furthermore, this work focused on analyzing the stability of the individual hydrogen bonds existing in planar and stacked arrangements.

Graphical abstract

Stacked and planar motif in 2-amino-4-nitrophenol

Keywords

Planar Stack CCSD(T) Stability 2-amino-4-nitrophenol 

Notes

Acknowledgments

Palanisamy Deepa, is thankful to the Science and Engineering Research Board (SERB), Government of India, New Delhi for the award of the Project (File Number: YSS/2015/000275) and financial assistance. Furthermore, Palanisamy Deepa expresses her sincere thanks to Pavel Hobza, Department of Computational Chemistry, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo na’m. 2, 166 10 Prague 6, Czech Republic for the computational facility.

References

  1. 1.
    Černý J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9(39):5291–5303CrossRefGoogle Scholar
  2. 2.
    Lehninger A, Nelson D, Cox M (1993) Lipid biosynthesis. Principles of biochemistry2nd edn. Worth, New York, pp 642–687Google Scholar
  3. 3.
    Hobza P, Šponer J (1999) Structure, energetics, and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem Rev 99(11):3247–3276CrossRefGoogle Scholar
  4. 4.
    Rezac J, Hobza P (2006) On the nature of DNA-duplex stability. Chemistry (Weinheim an der Bergstrasse, Germany) 13(10):2983–2989Google Scholar
  5. 5.
    Rezac J, Hobza P (2007) On the nature of DNA-duplex stability. Chemistry (Weinheim an der Bergstrasse, Germany) 13(10):2983–2989Google Scholar
  6. 6.
    Jurecka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine⊙⊙⊙ cytosine, adenine⊙⊙⊙ thymine, and their 9-and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD (T) levels and comparison with experiment. J Am Chem Soc 125(50):15608–15613CrossRefGoogle Scholar
  7. 7.
    Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment, vol 2. Royal Society of Chemistry, CambridgeGoogle Scholar
  8. 8.
    Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100(1):143–168CrossRefGoogle Scholar
  9. 9.
    Riley KE, Pitonák M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3(1):289–300CrossRefGoogle Scholar
  11. 11.
    da Costa LM, Stoyanov SR, Gusarov S, Tan X, Gray MR, Stryker JM, Tykwinski R, de M Carneiro JW, Seidl PR, Kovalenko A (2012) Density functional theory investigation of the contributions of π−π stacking and hydrogen-bonding interactions to the aggregation of model Asphaltene compounds. Energy Fuel 26:2727–2735CrossRefGoogle Scholar
  12. 12.
    Latosińska JN, Seliger J, Zagar V, Burchardt DV (2009) Hydrogen bonding and stacking π-π interactions in solid 6-Thioguanine and 6-Mercaptopurine (antileukemia and antineoplastic drugs) studied by NMR-NQR double resonance spectroscopy and density functional theory. J Phys Chem A 113:8781–8790CrossRefGoogle Scholar
  13. 13.
    Swart M, Wijst TV d, Guerra CF, Matthias F (2007) π-π stacking tackled with density functional theory. J Mol Model 13:1245–1257CrossRefGoogle Scholar
  14. 14.
    Dillon AC, Heben MJ (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A Mater Sci Process 72:133–142CrossRefGoogle Scholar
  15. 15.
    Dresselhaus MS, Dresselhaus G, Avouris P (2000) Carbon nanotubes: synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  16. 16.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  17. 17.
    Zimm BH (1960) Theory of “melting” of the helical form in double chains of the DNA type. J Chem Phys 33:1349CrossRefGoogle Scholar
  18. 18.
    Hunter CA, Singh J, Thornton JM (1991) Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J Mol Biol 218:837CrossRefGoogle Scholar
  19. 19.
    Vyas NN, Vyas MN, Quiocho FA (1987) A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature (London) 327:635–638CrossRefGoogle Scholar
  20. 20.
    Jorgensen WL, Severance DL (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J Am Chem Soc 112:4768CrossRefGoogle Scholar
  21. 21.
    Kryger G, Silman I, Sussman JL (1998) J Physiol Paris 92:19CrossRefGoogle Scholar
  22. 22.
    Helgaker T, Jorgensen P, Olsen J (2014) Molecular electronic-structure theory. Wiley, New YorkGoogle Scholar
  23. 23.
    Hobza P (2004) 2 theoretical studies of hydrogen bonding. Annu Rep C (Phys Chem) 100:3–27CrossRefGoogle Scholar
  24. 24.
    Blagden N, Cross WI, Davey RJ, Broderick M, Pritchard RG, Roberts RJ, Rowe RC (2001) Can crystal structure prediction be used as part of an integrated strategy for ensuring maximum diversity of isolated crystal forms? The case of 2-amino-4-nitrophenol. Phys Chem Chem Phys 3(17):3819–3825CrossRefGoogle Scholar
  25. 25.
    Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120CrossRefGoogle Scholar
  26. 26.
    Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95:4601CrossRefGoogle Scholar
  27. 27.
    Grimme S (2010) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–218CrossRefGoogle Scholar
  28. 28.
    Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670CrossRefGoogle Scholar
  29. 29.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785CrossRefGoogle Scholar
  31. 31.
    Kroon-Batenburg L, Van Duijneveldt F (1985) The use of a moment-optimized DZP basis set for describing the interaction in the water dimer. J Mol Struct THEOCHEM 22(1-5):185–199CrossRefGoogle Scholar
  32. 32.
    Jurečka P, Šponer J, Černý J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8(17):1985–1993CrossRefGoogle Scholar
  33. 33.
    Jurecka P, Hobza P (2002) Chem Phys Lett 365:89–94CrossRefGoogle Scholar
  34. 34.
    Hobza P, Jurečka P, Šponer J (2002) J Am Chem Soc 124:11802–11808CrossRefGoogle Scholar
  35. 35.
    Dabkowska I, Jurecka P, Hobza P (2005) J Chem Phys 122:204322–204329CrossRefGoogle Scholar
  36. 36.
    Glendening E, Reed A, Carpenter J, Weinhold F (1990) NBO 3.0 program manual. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  37. 37.
    Schmider HL, Becke AD (1998) Optimized density functionals from the extended G2 test set. J Chem Phys 108(23):9624–9631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations