Shedding light on the electronic structure of [Ru(η6-C16H16)(NH3)3]2+ complex: a computational insight

  • Renato P. OrenhaEmail author
  • Giovanni F. Caramori
  • Alechania Misturini
  • Sérgio E. Galembeck
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


Ruthenophanes have been recognized as potential candidates to the design of electrically conducting polymers, particularly due to their electrochemical, structural, and spectroscopic properties. The comprehension and rationalization of the metal–ligand interaction is fundamental to pave the way for future applications as the design of new conducting materials. For that reason, this investigation sheds light on the electronic details behind the cation–π interactions present in ruthenophanes by using [Ru(η6-C16H16)(NH3)3]2+ as a model. Zeroth-order symmetry-adapted perturbation theory (SAPT0) shows the interaction Ru(II)–[2.2]paracyclophane with a predominant covalent character. However, the hapticity analysis of [2.2]paracyclophane shows only two predominantly covalent Ru–C bonds, as highlighted by the total energy density, H(r), in the bond critical point (BCP) obtained from quantum theory of atoms in molecules (QTAIM) method, and by second-order stabilization energy, ΔE(2), related to the processes: π C–C → dσ or dπ Ru, achieved in the natural bond orbital (NBO) method. The other two Ru–C chemical bonds show a largely electrostatic character, as can be visualized from the delocalization index, DI, between the electron basins in the electron localization function (ELF) method. Remarkably, the interacting quantum atoms (IQA) method showed practically the same value of the total interaction energy, E\(_{\text {int} }^{\text {AB}}\), between Ru and these C atoms and, then, corroborates the hapticity four of the ligand: [2.2]paracyclophane. Source function distribution presents a correlation with the electronic interactions between different groups in [Ru(η6-C16H16)(NH3)3]2+.

Graphical Abstract

The nature of the interactions between [Ru(NH3)3]2+ and [2.2]paracyclophane in [Ru(η6-C16H16)(NH3)3]2+ was investigated with different methods of energy decomposition and electron density analysis. This interaction has a predominantly covalent character. It was possible to observe that some Ru-C interactions have a larger covalent character, in contrast for other that are mainly ionic.


Cation–π interaction SAPT Ru-C chemical bond ELF Hapticity IQA 



The authors thank the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Programa de Apoio à Pós-Graduação (PROAP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant 304447/2010-2), and São Paulo Research Foundation (FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo) (Grants 2008/02677-0 and 2014/5026 5-3) for financial support. SEG thanks CNPq for research fellowships (Grants 304393/2013-4 and 308254/2016-3). RPO thanks FAPESP for graduate fellowships (Grants 2011/20351-7 and 2015/15176-2). GFC thanks CNPq (Grant 311963/2017-0) for the research fellowship and the Centro Nacional de Supercomputação CESUP-UFRGS for the excellent computational service provided. We also acknowledge Ali Faez Taha for technical assistance.

Supplementary material

894_2018_3882_MOESM1_ESM.pdf (792 kb)
(PDF 791 KB)


  1. 1.
    Keehn PM, Rosenfeld SM (1983) Cyclophanes. Academic Press, New YorkGoogle Scholar
  2. 2.
    Vögtle F (1990) Cyclophan-chemie: Synthesen, strukturen, reaktionen einführung und überblick. Vieweg+Teubner Verlag, GermanyCrossRefGoogle Scholar
  3. 3.
    Gleiter R, Hopf H (2004) Modern cyclophane chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Pellegrin M (1899) Contribution à l’étude de la réaction de Fittig. Recl Trav Chim Pays-Bas.
  5. 5.
    Vögtle F (1970) Vielfach verbrückte aromatische verbindungen, I 2.11.20- trithia[3.3.3](1,3,5)cyclophan). Liebigs Ann Chem.
  6. 6.
    Caramori GF, Garcia LC, Andrada DM, Frenking G (2014) Ruthenophanes: Evaluating cation–π interactions in [Ru(η 6-C16H12 R 4)(NH3)3]2+/3+ complexes. A computational insight. Organometallics.
  7. 7.
    Caramori GF, Garcia LC, Andrada DM, Frenking G (2014) Ruthenium(II) complexes of N-heterocyclic carbenes derived from imidazolium-linked cyclophanes. Dalton Trans.
  8. 8.
    Bartoli S, Roelens S (2002) Binding of acetylcholine and tetramethylammonium to a cyclophane receptor: Anion’s contribution to the cation interaction. J Am Chem Soc.
  9. 9.
    Giese M, Albrecht M, Rissanen K (2016) Experimental investigation of anion–π interactions applications and biochemical relevance. Chem Commun.
  10. 10.
    Dyson PJ, Johnson BF, Martin CM (1998) Ruthenium cluster-[2.2]paracyclophane complexes. Coord Chem Rev.
  11. 11.
    Laganis E, Finke R, Boekelheide V (1980) Multilayered transition metal complexes of cyclophanes. Tetrahedron Lett.
  12. 12.
    Finke RG, Voegeli RH, Laganis ED, Boekelheide V (1983) Multielectron-transfer electrochemistry. Two-electron reduction of bis-(η 6-hexamethylbenzene)ruthenium(2+) and (η 6-hexamethylbenzene)(η 6-cyclophane)ruthenium(2+) complexes. Organometallics.
  13. 13.
    Rohrbach WD, Boekelheide V (1983) Syntheses of [22](1,4)cyclophaneruthenium(II) complexes via the mono-birch reduction product of 4,5,7,8-tetramethyl[22](1,4)cyclophane. J Org Chem.
  14. 14.
    Boekelheide V (1986) Metal complexes of [2n]cyclophanes and their mixed valence ions. Pure Appl Chem.
  15. 15.
    Swann RT, Hanson AW, Boekelheide V (1986) Ruthenium complexes of [2n]cyclophanes. A general synthesis of bis(η 6-[2n]cyclophane)ruthenium(II) compounds and related chemistry. J Am Chem Soc.
  16. 16.
    Plitzko KD, Wehrle G, Gollas B, Rapko B, Dannheim J, Boekelheide V (1990) Bis(η 6-hexamethylbenzene)(η 6,η 6-polycyclicaromatic)diruthenium(II,II) complexes and their two-electron reduction to cyclohexadienyl anion complexes. J Am Chem Soc.
  17. 17.
    Garcia LC, Caramori GF, Bergamo PA, Parreira RLT (2016) Transport properties of ruthenophanes - A theoretical insight. Chem Phys.
  18. 18.
    Doro FG, Pepe MI, Galembeck SE, Carlos RM, Rocha ZN, Bertotti M, Tfouni E (2011) Reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam fac-[Ru(NO)Cl2(κ 3 N 4,N8,N11(1- carboxypropyl)cyclam)]Cl⋅H2O. Dalton Trans.
  19. 19.
    Orenha RP, Santiago RT, Haiduke RLA, Galembeck SE (2017) How computational methods and relativistic effects influence the study of chemical reactions involving Ru-NO complexes? J Comp Chem.
  20. 20.
    Orenha RP, Rocha MVJ, Poater J, Galembeck SE, Bickelhaupt FM (2017) Nature of the Ru-NO coordination bond: Kohn–Sham molecular orbital and energy decomposition analysis. ChemistryOpen.
  21. 21.
    Galembeck SE, Caramori GF, Misturini A, Garcia LC, Orenha RP (2017) Metal–ligand bonding situation in ruthenophanes containing multibridged cyclophanes. Organometallics.
  22. 22.
    Hohenstein EG, Sherrill CD (2012) Wavefunction methods for noncovalent interactions. WIREs: Comput Mol Sci.
  23. 23.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A.
  24. 24.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B.
  25. 25.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem.
  26. 26.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem.
  27. 27.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys.
  28. 28.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys.
  29. 29.
    Lenthe EV, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys.
  30. 30.
    Grimme S (2003) Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys.
  31. 31.
    Ahlrichs R, Bär M, Häser M, Horn H, Kömel C (1989) Electronic structure calculations on workstation computers: The program system Turbomole. Chem Phys Lett.
  32. 32.
    Canal Neto A, Muniz EP, Centoducatte R, Jorge FE (2005) Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. J Mol Struct (Theochem).
  33. 33.
    Oliveira PJP, Barros CL, Jorge FE, Canal Neto A, Campos M (2010) Augmented Gaussian basis set of double zeta valence quality for the atoms Rb and Y-Xe: Application in DFT calculations of molecular electric properties. J Mol Struct (Theochem).
  34. 34.
    Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys.
  35. 35.
    Campos CT, Jorge FE (2012) Triple zeta quality basis sets for atoms Rb through Xe: Application in CCSD(T) atomic and molecular property calculations. Mol Phys.
  36. 36.
    Fantin PA, Barbieri PL, Canal Neto A, Jorge FE (2007) Augmented Gaussian basis sets of triple and quadruple zeta valence quality for the atoms H and from Li to Ar: Applications in HF, MP2, and DFT calculations of molecular dipole moment and dipole (hyper)polarizability. J Mol Struct (Theochem).
  37. 37.
    Martins LSC, de Souza FAL, Ceolin GA, Jorge FE, de Berrêdo RC, Campos CT (2013) Augmented Gaussian basis sets for the elements K, Sc-Kr, Rb, and Y-Xe: Application in HF, MP2, and DFT calculations of molecular electric properties. Comp Theor Chem.
  38. 38.
    Hättig C (2005) Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys Chem Chem Phys.
  39. 39.
    Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer HF, King RA, Valeev EF, Sherrill CD, Crawford TD (2011) Psi4: an open-source ab initio electronic structure program. WIREs: Comput Mol Sci.
  40. 40.
    Peterson KA, Figgen D, Dolg M, Stoll H (2007) Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. J Chem Phys.
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 (Revision d.01). Gaussian, Inc., WallingfordGoogle Scholar
  42. 42.
    Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: The electron localization function. Angew Chem Int Ed.
  43. 43.
    Bader RFW (1990) Atoms in molecules: a quantum theory (international series of monographs on chemistry). Oxford University Press, New YorkGoogle Scholar
  44. 44.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev.
  45. 45.
    Bader RFW (1998) A bond path: A universal indicator of bonded interactions. J Phys Chem A.
  46. 46.
    Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput.
  47. 47.
    Bader RFW, Gatti C (1998) A Green’s function for the density. Chem Phys Lett.
  48. 48.
    Lu T, Chen F (2011) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem.
  49. 49.
    Todd A, Keith TK (2017) AIMALl (version 17.01.25). Overland Park, Gristmill Software. Google Scholar
  50. 50.
    Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs: Comput Mol Sci.
  51. 51.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0 Theoretical chemistry institute. University of Wisconsin, MadisonGoogle Scholar
  52. 52.
    Schaftenaar G, Noordik JH (2000) Molden: A pre- and post-processing program for molecular and electronic structures. J Comput-Aided Mol Design.
  53. 53.
    Marvin 5.12.3 (2013) ChemAxon. Accessed 7 Mar 2018
  54. 54.
    Jmol: an open-source Java viewer for chemical structures in 3D. Accessed 7 Mar 2018
  55. 55.
    Natural Bond Orbitals (NBO) in Organic Chemistry. Accessed 7 Mar 2018
  56. 56.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem.
  57. 57.
    Dennington R, Keith T, Millam J (2009) Gaussview 5.0. Semichem Inc, Shawnee MissionGoogle Scholar
  58. 58.
    Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O⋅⋅⋅H 2O hydrogen bond in H2 CO ⋅⋅⋅H 2O and H2 CO ⋅⋅⋅2H2O. J Chem Phys.
  59. 59.
    Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys.
  60. 60.
    Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theor Comput.
  61. 61.
    Glendening ED (2005) Natural energy decomposition analysis: Extension to density functional methods and analysis of cooperative effects in water clusters. J Phys Chem A.
  62. 62.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev.
  63. 63.
    Szalewicz K (2012) Symmetry-adapted perturbation theory of intermolecular forces. WIREs: Comput Mol Sci.
  64. 64.
    Hohenstein EG, Sherrill CD (2010) Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π-π interactions in linear acenes. J Chem Phys.
  65. 65.
    Hohenstein EG, Parrish RM, Sherrill CD, Turney JM, Schaefer HF (2011) Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions. J Chem Phys.
  66. 66.
    Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD (2014) Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J Chem Phys.
  67. 67.
    Kundu A, Sen S, Patwari GN (2015) The propargylbenzene dimer: C-H⋅⋅⋅π assisted π-π stacking. Phys Chem Chem Phys.
  68. 68.
    Wang W, Sun T, Zhang Y, Wang Y-B (2015) Benchmark calculations of the adsorption of aromatic molecules on graphene. J Comput Chem.
  69. 69.
    Moreira L, Calbo J, Illescas BM, Aragó J, Nierengarten I, Delavaux-Nicot B, Ortí E, Martín N, Nierengarten J-F (2015) Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew Chem Int Ed.
  70. 70.
    Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett.
  71. 71.
    Gráfová L, Pitoňák M, Řezáč J, Hobza P (2010) Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set. J Chem Theory Comput.
  72. 72.
    Foroutan-Nejad C, Shahbazian S, Marek R (2014) Toward a consistent interpretation of the QTAIM: Tortuous link between chemical bonds, interactions, and bond/line paths. Chem-Eur J.
  73. 73.
    Bertini L, Cargnoni F, Gatti C (2007) Chemical insight into electron density and wave functions: Software developments and applications to crystals, molecular complexes and materials science. Theor Chem Acc.
  74. 74.
    Van der Maelen JF, Cabeza JA (2016) A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re). Theor Chem Acc.
  75. 75.
    Varadwaj PR, Varadwaj A, Jin B-Y (2015) Unusual bonding modes of perfluorobenzene in its polymeric (dimeric, trimeric and tetrameric) forms: Entirely negative fluorine interacting cooperatively with entirely negative fluorine. Phys Chem Chem Phys.
  76. 76.
    Farrugia LJ, Evans C, Tegel M (2006) Chemical bonds without “chemical bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A.
  77. 77.
    Monza E, Gatti C, Lo Presti L, Ortoleva E (2011) Revealing electron delocalization through the source function. J Phys Chem A.
  78. 78.
    Pal R, Mukherjee S, Chandrasekhar S, Guru row TN (2014) Exploring cyclopentadienone antiaromaticity: Charge density studies of various tetracyclones. J Phys Chem A.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química, FFCLRPUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Santa Catarina, Campus Universitário TrindadeFlorianópolisBrazil

Personalised recommendations