Aluminum cluster for CO and O2 adsorption

  • Bipasa Samanta
  • Turbasu Sengupta
  • Sourav Pal
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


Low temperature oxidation of CO to CO2 is an important process for the environment. Similarly adsorption of CO from the releasing sources is also of major concern today. Whereas the potential of gold and silver clusters is well proven for the catalysis of the above mentioned reaction, the potential of aluminum (Al) clusters remains unexplored. The present study proves that, similar to the transition metals, Al clusters can also be used for adsorption of gases. We first tested the potential of Al cluster as adsorbents for CO. The high binding energy (BE) values prove that Al clusters can be used for adsorbing both CO and O2. Since oxygen binding is more facile, we adsorbed oxygen on Al and then checked the effect of this O2 on the BE of CO. The results were obtained by DFT calculations at M062X/TZVP level of theory.

Graphical abstract

Activation of carbon monoxide (CO) on oxygen-adsorbed aluminum (Al) cluster


DFT Aluminum clusters CO adsorption O2 adsorption Charge decomposition analysis Wiberg bond indices 



B.S. would like to thank IITB for providing a Teaching Assistant fellowship and high performance computation facilities. T.S. would like to thank the University Grant Commission (UGC) for a Senior Research Fellowship (SRF). The authors acknowledge the Center of Excellence in Scientific Computing at CSIR-NCL. S.P. acknowledges the J.C. Bose Fellowship grant of SERB, India, towards partial fulfillment of this work.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

894_2018_3869_MOESM1_ESM.docx (449 kb)
ESM 1 (DOCX 449 kb)


  1. 1.
    Bernhardt TM (2005) Int J Mass Spectrom 243:1–29CrossRefGoogle Scholar
  2. 2.
    Yin S, Bernstein ER (2012) Int J Mass Spectrom 321–322:49–65CrossRefGoogle Scholar
  3. 3.
    Bohme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354CrossRefGoogle Scholar
  4. 4.
    Schlangen M, Schwarz H (2012) Catal Lett 142:1265–1278CrossRefGoogle Scholar
  5. 5.
    Richard A, Hair JO, Khairallah GN (2004) J Clust Sci 15:3CrossRefGoogle Scholar
  6. 6.
    Castleman Jr A, Khanna S (2009) J Phys Chem C 113:2664–2675CrossRefGoogle Scholar
  7. 7.
    Luo Z, Castleman AW (2014) Acc Chem Res 47:2931–2940CrossRefPubMedGoogle Scholar
  8. 8.
    Alonso J (2005) Structure and properties of atomic nanoclusters. World Scientific, LondonGoogle Scholar
  9. 9.
    Eric CT, Stefan V (2015) NAT Nanotechnology 10:577–588CrossRefGoogle Scholar
  10. 10.
    Vogel W, Lundquist JG, Ross P, Stonehart P (1975) Electrochim Acta 20:79CrossRefGoogle Scholar
  11. 11.
    Dhar HP, Christner LG, Kush AK (1987) J Electrochem Soc 134:302CrossRefGoogle Scholar
  12. 12.
    Lemons RA (1990) J Power Sources 29:251CrossRefGoogle Scholar
  13. 13.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  14. 14.
    Lang SM, Bernhardt TM (2012) Phys Chem Chem Phys 14:9255–9269CrossRefPubMedGoogle Scholar
  15. 15.
    Pascucci B, Otero GS, Belelli PG, Illas F, Branda MM (2014) J Mol Model 20:2448CrossRefPubMedGoogle Scholar
  16. 16.
    Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem 120:4913–4917CrossRefGoogle Scholar
  17. 17.
    Manzoor D, Krishnamurty S, Pal S (2014) J Phys Chem C 118:7501–7507CrossRefGoogle Scholar
  18. 18.
    Van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875–6876CrossRefGoogle Scholar
  19. 19.
    Jarrold MF, Bower JE (1987) J Chem Phys 87:1610CrossRefGoogle Scholar
  20. 20.
    Jarrold MF, Bower JE (1987) J Chem Phys 87:5728CrossRefGoogle Scholar
  21. 21.
    Ruatta SA, Anderson SL (1988) J Chem Phys 89:273CrossRefGoogle Scholar
  22. 22.
    Leuchtner RE, Harms AC, Castleman Jr AW (1991) J Chem Phys 94:1093CrossRefGoogle Scholar
  23. 23.
    Batra IP, Kleinman L (1984) J Electron Spectrosc Relat Phenom 33:175–241CrossRefGoogle Scholar
  24. 24.
    Wang L, Kuklja MM (2010) J Phys Chem Solids 71:140–144CrossRefGoogle Scholar
  25. 25.
    Huang Y, Wang A, Wang X, Zhang T (2007) Int J Hydrog Energy 32:3880–3886CrossRefGoogle Scholar
  26. 26.
    Bergeron DE, Castleman AW, Morisato T, Khanna SN (2004) Science 304:84–87CrossRefPubMedGoogle Scholar
  27. 27.
    Bergeron D, Roach P, Castleman A, Jones N, Khanna S (2005) Science 307:231–235CrossRefPubMedGoogle Scholar
  28. 28.
    Reber AC, Khanna SN, Castleman AW (2007) J Am Chem Soc 129:10189–10194CrossRefPubMedGoogle Scholar
  29. 29.
    Bergeron D, Castleman A (2003) Chem Phys Lett 371:189–193CrossRefGoogle Scholar
  30. 30.
    Leuchtner R, Harms A, Castleman Jr A (1989) J Chem Phys 91:2753–2754CrossRefGoogle Scholar
  31. 31.
    Burgert R, Schnöckel H (2008) Chem Commun 18:2075–2089CrossRefGoogle Scholar
  32. 32.
    Burgert R, Stokes ST, Bowen KH, Schnöckel H (2006) J Am Chem Soc 128:7904–7908CrossRefPubMedGoogle Scholar
  33. 33.
    Leskiw B, Castleman Jr A, Ashman C, Khanna S (2001) J Chem Phys 114:1165–1169CrossRefGoogle Scholar
  34. 34.
    Burgert R, Schnöckel H, Grubisic A, Li X, Stokes ST, Bowen KH, Ganteför G, Kiran B, Jena P (2008) Science 319:438–442CrossRefPubMedGoogle Scholar
  35. 35.
    Neumaier M, Olzmann M, Kiran B, Bowen KH, Eichhorn B, Stokes ST, Buonaugurio A, Burgert R, Schnöckel H (2014) J Am Chem Soc 136:3607–3616CrossRefPubMedGoogle Scholar
  36. 36.
    Luo Z, Smith JC, Berkdemir C, Castleman A (2013) Chem Phys Lett 590:63–68CrossRefGoogle Scholar
  37. 37.
    Grubisic A, Li X, Gantefoer G, Bowen KH, Schnöckel H, Tenorio FJ, Martinez A (2009) J Chem Phys 131:184305CrossRefPubMedGoogle Scholar
  38. 38.
    Reber AC, Khanna SN, Roach PJ, Woodward WH, Castleman JA (2010) J Phys Chem A 114:6071–6081CrossRefPubMedGoogle Scholar
  39. 39.
    Bagus PS, Hermann CK, Bauschlicher Jr W (1984) J Chem Phys 80:4378CrossRefGoogle Scholar
  40. 40.
    Cox DM, Reichmann KC, Trevor DJ, Kaldor A (1988) J Chem Phys 88:111CrossRefGoogle Scholar
  41. 41.
    Pireaux JJ, Ghijsen J, JWm M, Verbist J, Caudano R (1979) Surf Sci 80:488–502CrossRefGoogle Scholar
  42. 42.
    Shiraki Y, Kobayashi KLI, Katayama Y (1978) Surf Sci 77:458–464CrossRefGoogle Scholar
  43. 43.
    Katayama Y, Kobayashi KLI, Shiraki Y (1979) Surf Sci 86:549–554CrossRefGoogle Scholar
  44. 44.
    Post D, Baerends EJ (1982) Surf Sci 116:177–187CrossRefGoogle Scholar
  45. 45.
    Cox M, Trevor DJ, Whetten RL, Kaldor A (1988) J Phys Chem 92:421CrossRefGoogle Scholar
  46. 46.
    Crowell JE, Yates Jr T (1986) Surf Sci 37:165Google Scholar
  47. 47.
    Hoffman A, Maniv T, Folman M (1987) Surf Sci 182:57CrossRefGoogle Scholar
  48. 48.
    Cox DM, Trevor DJ, Whetten RL, Kaldor A (1988) J Phys Chem 92:421–429CrossRefGoogle Scholar
  49. 49.
    Reber AC, Khanna SN, Roach PJ, Woodward WH, Castleman Jr AW (2007) J Am Chem Soc 129:16098–16101CrossRefPubMedGoogle Scholar
  50. 50.
    Johnson GE, Tyo EC, Castleman Jr AW (2008) J Phys Chem A 112:4732–4735CrossRefPubMedGoogle Scholar
  51. 51.
    Rondina GG, Da Silva JL (2013) J Chem Inf Model 53:2282–2298CrossRefPubMedGoogle Scholar
  52. 52.
    Candido L, Rabelo JT, Da Silva JL, Hai GQ (2012) Phys Rev B: Condens Matter Phys 85:245404Google Scholar
  53. 53.
    Drebov N, Ahlrichs R (2010) J Chem Phys 132:164703CrossRefPubMedGoogle Scholar
  54. 54.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GJ, Fox DJ (2009) Gaussian 09, revision A.01. Gaussian, Inc, Wallingford, CTGoogle Scholar
  55. 55.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefPubMedGoogle Scholar
  56. 56.
    Xiao M, Lu T (2015) J Adv Phys Chem 4:111–124CrossRefGoogle Scholar
  57. 57.
    Lu T, Chen F (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  58. 58.
    Glendening E, Badenhoop J, Reed A, Carpenter J, Weinhold F (1996) NBO, version 3.1. Theoretical Chemistry Institute University of Wisconsin, Madison, WIGoogle Scholar
  59. 59.
    Duarte HA, Salahub DR (1998) J Chem Phys 108:743CrossRefGoogle Scholar
  60. 60.
    Lacaze-Dufaure C, Blanc C, Mankowski G, Mijoule C (2007) Surf Sci 601:1544–1553CrossRefGoogle Scholar
  61. 61.
    Socaciu LD, Hagen J, Bernhardt TM, Woste L, Heiz U, Hakkinen H, Landman U (2003) J Am Chem Soc 125:10437CrossRefPubMedGoogle Scholar
  62. 62.
    Wedler G, Papp H, Schroll G (1974) Surf Sci 44:463CrossRefGoogle Scholar
  63. 63.
    Helms CR, Madix RJ (1975) Surf Sci 52:677CrossRefGoogle Scholar
  64. 64.
    Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou M, Cohen ML (1984) Phys Rev Lett 52:2141–2143Google Scholar
  65. 65.
    Veldeman N, Lievens P, Andersson M (2005) J Phys Chem A 109:11793–11801CrossRefPubMedGoogle Scholar
  66. 66.
    Dar M, Krishnamurty S, Pal S (2016) Phys Chem Chem Phys 18:7068CrossRefGoogle Scholar
  67. 67.
    Kalita B, Deka RC (2009) Eur Phy J D 53:51–58CrossRefGoogle Scholar
  68. 68.
    Bagus PS, Nelin CJ, Bauschlicher Jr CW (1984) J Vac Sci Technol A 2:905CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyMumbaiIndia
  2. 2.Physical Chemistry DivisionCSIR National Chemical LaboratoryPuneIndia
  3. 3.Department of Chemical ScienceIndian Institute of Science Education and ResearchNadiaIndia

Personalised recommendations