Advertisement

Journal of Molecular Modeling

, 24:320 | Cite as

Gas-phase reaction of benzo[a]anthracene with hydroxyl radical in the atmosphere: products, oxidation mechanism, and kinetics

  • Juan DangEmail author
  • Qingzhu ZhangEmail author
Original Paper
  • 125 Downloads

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have induced large-scale and long-term environmental contamination due to heavy emissions, toxicity, and persistence. The investigation of the ultimate sink of PAHs in the atmosphere is very important. In this work, using quantum chemistry methods, the reaction mechanism of hydroxyl radical-initiated oxidation of benzo[a]anthracene (BaA) in the atmosphere was studied. The products resulted from the gas-phase reaction of BaA with hydroxyl radical include benzo[a]anthracenols, dialdehydes, ketones, epoxides, etc. Applying Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the overall rate constant for reactions of •OH addition to BaA was estimated to be 4.82 × 10−11 cm3 molecule−1 s−1 at 298 K and 1 atm. The lifetime of BaA in the atmosphere with respect to hydroxyl radical was calculated to be 5.92 h.

Keywords

Benzo[a]anthracene Hydroxyl radical Oxidation mechanism Degradation products Rate constants 

Notes

Acknowledgments

Hong Kong Scholars Program (project No. XJ2017015)" and the Central Universities Fundamental Research Funds (project No. lzujbky-2018-44) for providing the financial support.

Supplementary material

894_2018_3862_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2691 kb)

References

  1. 1.
    Chen F, Hu W, Zhong Q (2013) Atmos Res 124:53–60CrossRefGoogle Scholar
  2. 2.
    Christie S, Raper D, Lee DS, Williams PI, Rye L, Blakey S, Wilson CW, Lobo P, Hagen D, Whitefield PD (2012) Environ Sci Technol 46(11):6393–6400CrossRefGoogle Scholar
  3. 3.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. Wiley, New YorkGoogle Scholar
  4. 4.
    Ramírez N, Cuadras A, Rovira E, Marcé RM, Borrull F (2011) Environ Health Perspect 119:1110–1116Google Scholar
  5. 5.
    Shen HZ, Huang Y, Wang R, Zhu D, Li W, Shen GF, Wang B, Zhang YY, Chen YC, Lu Y, Chen H, Li TC, Sun K, Li BG, Liu WX, Liu JF, Tao S (2013) Environ Sci Technol 47(12):6415–6424CrossRefGoogle Scholar
  6. 6.
    Kolasa E, Balaguer P, Houlbert N, Fardel O (2012) Toxicol in Vitro 26(6):807–816CrossRefGoogle Scholar
  7. 7.
    Terzi E, Samara C (2004) Environ Sci Technol 38(19):4973–4978CrossRefGoogle Scholar
  8. 8.
    Slezakova K, Castro D, Begonha A, Delerue-Matos C, Alvim-Ferraz M, Morais S, Pereira M (2011) Microchem J 99:51–59CrossRefGoogle Scholar
  9. 9.
    Keyte IJ, Harrison RM, Lammel G (2013) Chem Soc Rev 42:9333–9391CrossRefGoogle Scholar
  10. 10.
    Robert GP (1983) Annu Rev Phys Chem 34:631–656CrossRefGoogle Scholar
  11. 11.
    Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley, New YorkGoogle Scholar
  12. 12.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al (2009) Gaussian 09, revision A02, vol 270. Gaussian Inc, WallingfordGoogle Scholar
  13. 13.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108(14):2715–2719CrossRefGoogle Scholar
  14. 14.
    Lynch BJ, Truhlar DG (2001) J Phys Chem A 105(13):2936–2941CrossRefGoogle Scholar
  15. 15.
    Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107(9):1384–1388CrossRefGoogle Scholar
  16. 16.
    Zhang QZ, Gao R, Xu F, Zhou Q, Jiang GB, Wang T, Chen JM, Hu JT, Jiang W, Wang WX (2014) Environ Sci Technol 48(9):5051–5057CrossRefGoogle Scholar
  17. 17.
    Glowacki DR, Liang CH, Morley C, Pilling MJ, Robertson SH (2012) J Phys Chem A 116:9545–9560CrossRefGoogle Scholar
  18. 18.
    Ananthula R, Yamada T, Taylor PH (2006) J Phys Chem A 110:3559–3566CrossRefGoogle Scholar
  19. 19.
    Lorenz K, Zellner R (1983) Berichte der Bunsengesellschaft für physikalische Chemie 87:629–636CrossRefGoogle Scholar
  20. 20.
    Perry RA, Atkinson R, Pitts JN (1977) J Phys Chem 81:296–304CrossRefGoogle Scholar
  21. 21.
    Kautzman KE, Surratt JD, Chan MN, Chan AWH, Hersey SP, Chhabra PS, Dalleska NF, Wennberg PO, Flagan RC, Seinfeld JH (2009) J Phys Chem A 114:913–934CrossRefGoogle Scholar
  22. 22.
    Lee JY, Lane DA (2010) Atmos Environ 44:2469–2477CrossRefGoogle Scholar
  23. 23.
    Jenkin ME, Valorso R, Aumont B, Rickard AR, Wallington TJ (2018) Atmos Chem Phys 18:9329–9349Google Scholar
  24. 24.
    Prinn RG, Weiss RF, Miller BR, Huang J, Alyea FN, Cunnold DM, Fraser PJ, Hartley DE, Simmonds PG (1995) Science 269:187–192CrossRefGoogle Scholar
  25. 25.
    Vereecken L, Glowacki DR, Pilling MJ (2015) Chem Rev 115:4063–4114CrossRefGoogle Scholar
  26. 26.
    Atkinson R, Arey J (2003) Chem Rev 103(12):4605–4638CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Western China’s Environmental Systems of the Ministry of Education, Key Laboratory of Environmental Pollution Prediction and Control of Gansu Province, College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  2. 2.Environment Research InstituteShandong UniversityJinanChina

Personalised recommendations