Advertisement

Journal of Molecular Modeling

, 24:326 | Cite as

Noble gas inserted compounds of borazine and its derivative B3N3R6: structures and bonding

  • Mei Wen
  • Zhuo Zhe Li
  • An Yong LiEmail author
Original Paper

Abstract

Quantum chemistry computations were performed at the MP2 and B3LYP levels of theory using the basis sets aug-cc-pVDZ and def2-TZVPPD to study the noble gas (Ng) compounds formed by insertion of a Ng atom (Kr, Xe, Rn) into the B–H/F and N–H/F bonds of inorganic benzene B3N3H6 and its fluorine derivative B3N3F6. The geometrical structures were optimized and vibrational analysis was carried out to demonstrate these structures being local minima on the potential energy surface. The thermodynamic properties of the formation process of Ng compounds were calculated. A series of theoretical methods based on the wavefunction analysis, including NBO, AIM and ELF methods and energy decomposition analysis, was used to investigate the bonding nature of the noble gas atoms and the properties of the Ng compounds. The N–Ng bond was found to be stronger than the B–Ng bond, but the B–Ng bond is of typical covalent character and σ-donation from the Ng atom to the ring B atom makes the predominant contribution towards stability of the B-Ng bond. NICS calculation shows that these Ng-containing compounds are of weak π-aromaticity.

Keywords

Noble gas Inorganic benzene B–Ng bond Cyclotriborazane derivative 

Supplementary material

894_2018_3860_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1367 kb)

References

  1. 1.
    Bartlett N (1962) Xenon hexafluoroplatinate (V) XE+[PTF6]. Proc Chem Soc 1962(6):197–236Google Scholar
  2. 2.
    Pettersson M, Nieminen J, Khriachtchev L, Räsänen M (1997) The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe. J Chem Phys 107(20):8423–8431CrossRefGoogle Scholar
  3. 3.
    Pettersson M, Lundell J, Khriachtchev L, Esa Isoniemi A, Räsänen M (1998) HXeSH, the first example of a xenon−sulfur bond. J Am Chem Soc 120(31):7979–7980CrossRefGoogle Scholar
  4. 4.
    Pettersson M, Khriachtchev L, Jan Lundell A, Räsänen M (1999) A chemical compound formed from water and xenon: HXeOH. J Am Chem Soc 121(50):11904–11905CrossRefGoogle Scholar
  5. 5.
    Evans CJ, Rubinoff DS, Gerry MCL (2000) Noble gas metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar AuF and Ar AuBr. Phys Chem Chem Phys 2(18):3943–3948CrossRefGoogle Scholar
  6. 6.
    Evans CJ, Gerry MCL (2000) The microwave spectra and structures of Ar–AgX (X=F,cl,Br). J Chem Phys 112(3):1321–1329CrossRefGoogle Scholar
  7. 7.
    Reynard LM, Evans CJ, Gerry MC (2001) Microwave Spectrum, structure, and hyperfine constants of Kr–AgCl: formation of a weak Kr–Ag covalent bond. J Mol Spectrosc 206(1):33–40CrossRefGoogle Scholar
  8. 8.
    Chen JL, Yang CY, Lin HJ, Hu WP (2013) Theoretical prediction of new noble-gas molecules FNgBNR (ng = Ar, Kr, and Xe; R = H, CH3, CCH, CHCH2, F, and OH). Phys Chem Chem Phys 15(24):9701–9709CrossRefGoogle Scholar
  9. 9.
    Li J, Bursten BE, Liang B, Andrews L (2002) Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science 295(5563):2242–2245CrossRefGoogle Scholar
  10. 10.
    Arppe T, Khriachtchev L, Lignell A, Domanskaya AV, Räsänen M (2012) Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. Inorg Chem 51(7):4398–4402CrossRefGoogle Scholar
  11. 11.
    Li TH, Mou CH, Huiru Chen A, Hu WP (2005) Theoretical prediction of Noble gas containing anions FNgO- (ng = he, Ar, and Kr). J Am Chem Soc 127(25):9241–9245CrossRefGoogle Scholar
  12. 12.
    Ghanty TK (2006) How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNgF (M=cu and ag, and ng=Ar, Kr, and Xe)? J Chem Phys 124(12):55–34CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Chen M, Zhou M, Andrada DM, Frenking G (2015) Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (ng = he, ne, Ar, Kr, Xe). J Phys Chem A 119(11):2543–2552CrossRefGoogle Scholar
  14. 14.
    Manna D, Ghosh A, Ghanty TK (2013) Theoretical prediction of XRgCO(+) ions (X = F, cl, and Rg = Ar, Kr, Xe). J Phys Chem A 117(51):14282–14292CrossRefGoogle Scholar
  15. 15.
    Li QZ, Liu WM, Li R, Li WZ, Cheng JB, Gong BA (2013) Influence of insertion of a noble gas atom on halogen bonding in H2O···XCCNgF and H3N···XCCNgF (X = cl and Br; ng = Ar, Kr, and Xe) complexes. Struct Chem 24(1):25–31CrossRefGoogle Scholar
  16. 16.
    Evans CJ, Lesarri A, Gerry MCL (2000) Noble gas−metal chemical bonds. Microwave spectra, geometries, and nuclear quadrupole coupling constants of Ar−AuCl and Kr−AuCl. J Am Chem Soc 122(25):6100–6105CrossRefGoogle Scholar
  17. 17.
    Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Räsänen M (2000) A stable argon compound. Nature 406(6798):874–876CrossRefGoogle Scholar
  18. 18.
    Pettersson M, Lundell J, Räsänen M (1995) Neutral rare-gas containing charge-transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe. J Chem Phys 103(1):205–210CrossRefGoogle Scholar
  19. 19.
    Khriachtchev L, Isokoski K, Cohen A, Räsänen M, Gerber RB (2008) A small neutral molecule with two Noble-gas atoms: HXeOXeH. Cheminform 39(33):6114–6118CrossRefGoogle Scholar
  20. 20.
    Tsivion E, Gerber RB (2011) Stability of noble-gas hydrocarbons in an organic liquid-like environment: HXeCCH in acetylene. Phys Chem Chem Phys 13(43):19601–19606CrossRefGoogle Scholar
  21. 21.
    Schröder D, Schwarz H, Jan Hrušák A, Pyykkö P (1998) Cationic gold(I) complexes of xenon and of ligands containing the donor atoms oxygen, nitrogen, phosphorus, and sulfur. Inorg Chem 37(37):624–632CrossRefGoogle Scholar
  22. 22.
    Pyykkoe P (1995) Predicted chemical bonds between rare gases and au+. J Am Chem Soc 117(7):2067–2070CrossRefGoogle Scholar
  23. 23.
    Gerber RB (2004) Formation of novel rare-gas molecules in low-temperature matrices. Annu Rev Phys Chem 55:55–78CrossRefGoogle Scholar
  24. 24.
    Grochala W (2007) Atypical compounds of gases, which have been called ‘noble. Cheminform 36(10):1632–1655Google Scholar
  25. 25.
    Ghanty TK (2005) Insertion of noble-gas atom (Kr and Xe) into noble-metal molecules (AuF and AuOH): are they stable? J Chem Phys 123(7):218–234CrossRefGoogle Scholar
  26. 26.
    Jayasekharan T, Ghanty TK (2006) Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, cl, and Br]: an ab initio investigation. J Chem Phys 124(16):758–734CrossRefGoogle Scholar
  27. 27.
    Jayasekharan T, Ghanty TK (2007) Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. J Chem Phys 127(11):114314CrossRefGoogle Scholar
  28. 28.
    Justik MW (2008) Halogens and noble gases. Annual reports section “a”. Inorg Chem 104:134–144Google Scholar
  29. 29.
    Jayasekharan T, Ghanty TK (2008) Prediction of metastable metal-rare gas fluorides: FMRgF (M=be and mg; Rg=Ar, Kr and Xe). J Chem Phys 128(14):874–834CrossRefGoogle Scholar
  30. 30.
    Ghosh A, Manna D, Ghanty TK (2015) Theoretical prediction of noble gas inserted thioformyl cations: HNgCSâ â° (ng = he, ne, Ar, Kr, and Xe). J Phys Chem A 119(11):2233–2243CrossRefGoogle Scholar
  31. 31.
    Khriachtchev L, Pettersson M, Lignell A, Räsänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123(35):8610–8611CrossRefGoogle Scholar
  32. 32.
    Avramopoulos A, Li J, Holzmann N, Frenking G, Papadopoulos MG (2011) On the stability, electronic structure, and nonlinear optical properties of HXeOXeF and FXeOXeF. J Phys Chem A 115(36):10226–10236CrossRefGoogle Scholar
  33. 33.
    Goetschel CT, Loos KR (1972) Reaction of xenon with dioxygenyl tetrafluoroborate. Preparation of FXe-BF2. J Am Chem Soc 94(9):3018–3021CrossRefGoogle Scholar
  34. 34.
    Chen W, Chen GH, Wu D, Wang Q (2016) BNg3F3: the first three noble gas atoms inserted into mono-centric neutral compounds - a theoretical study. Phys Chem Chem Phys 18(26):17534–17545CrossRefGoogle Scholar
  35. 35.
    Kato T, Yamabe T (2005) The effects of H–F and H–D substitutions on Jahn–teller effects and charge transfer in the monocations of B, N-substituted acenes. Chem Phys 315(1):109–120CrossRefGoogle Scholar
  36. 36.
    Kato T, Yamabe T (2004) The effect of atomic substitution on electron-phonon interactions in negatively charged B, N-substituted acenes. J Chem Phys 121(1):501–509CrossRefGoogle Scholar
  37. 37.
    Stock A, Pohland E (1926) Borwasserstoffe, IX.: B3N3H6. Eur J Inorg Chem 59(9):2215–2223Google Scholar
  38. 38.
    Kaldor A, Porter RF (1971) Infrared spectra of the pyrolysis products of borane carbonyl in an argon matrix. J Am Chem Soc 93(9):103–114CrossRefGoogle Scholar
  39. 39.
    Kartha VB, Krishnamachari SLNG, Subramaniam CR (1967) The infrared spectra of borazine and its isotopic species. Assignment of the a2″ fundamental modes. J Mol Spectrosc 23(2):149–157CrossRefGoogle Scholar
  40. 40.
    Verma K, Viswanathan KS (2017) The borazine dimer: the case of a dihydrogen bond competing with a classical hydrogen bond. Phys Chem Chem Phys 19(29):19067–19074CrossRefGoogle Scholar
  41. 41.
    Rol B, Maulitz AH, Peter S (2010) Solid-state Borazine: does it deserve to be entiteled “inorganic benzene” ? Eur J Inorg Chem 127(10):1887–1889Google Scholar
  42. 42.
    Steiner E, And PWF, Havenith RWA (2002) Current densities of localized and delocalized electrons in molecules. J Phys Chem A 106(106):7048–7056CrossRefGoogle Scholar
  43. 43.
    Jug K (1983) A bond order approach to ring current and aromaticity. J Org Chem 48(8):1344–1348CrossRefGoogle Scholar
  44. 44.
    PVRS HJ, And VGM, Malkina‡ OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119(51):12669–12670CrossRefGoogle Scholar
  45. 45.
    Madura ID, Krygowski TM, Cyranski MK (1999) ChemInform abstract: structural aspects of the aromaticity of cyclic π-electron systems with BN bonds. Cheminform 30(12):14913–14918Google Scholar
  46. 46.
    Jemmis ED, Kiran B (2010) Aromaticity in X3Y3H6 (X = B, Al, Ga; Y = N, P, as), X3Z3H3 (Z = O, S, se), and phosphazenes. Theoretical study of the structures, energetics, and magnetic properties. Cheminform 29(29):2110–2116CrossRefGoogle Scholar
  47. 47.
    Kiran B, And AKP, Jemmis ED (2001) Is Borazine aromatic? Unusual parallel behavior between hydrocarbons and corresponding B−N analogues. Inorg Chem 40(14):3615CrossRefGoogle Scholar
  48. 48.
    Engelberts JJ, Havenith RWA, van Lenthe JH, Jenneskens LW, Fowler PW (2005) The electronic structure of inorganic benzenes: valence bond and ring-current descriptions. Inorg Chem 44(15):5266–5272CrossRefGoogle Scholar
  49. 49.
    Steinmann SN, Jana DF, Wu JI, Pv S, Mo Y, Corminboeuf C (2010) Direct assessment of electron delocalization using NMR chemical shifts. Angew Chem 48(52):9828–9833CrossRefGoogle Scholar
  50. 50.
    Fowler PW, Steiner E (1997) Ring currents and aromaticity of monocyclic π-Electron systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5 , C7H7 +, C3N3F3, C6H3F3, and C6F6. J Phys Chem 101(7):1409–1413CrossRefGoogle Scholar
  51. 51.
    Baranac-Stojanović M, Stojanović M (2013) Substituent effects on cyclic electron delocalization in symmetric B- and N-trisubstituted borazine derivatives. RSC Adv 3(46):24108–24117CrossRefGoogle Scholar
  52. 52.
    Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) CVD growth of boron nitride nanotubes. Chem Mater 12(7):1808–1810CrossRefGoogle Scholar
  53. 53.
    Parker JK, Davis SR (1997) Ab initio study of the relative energies and properties of Fluoroborazines. J Phys Chem A 101(49):9410–9414CrossRefGoogle Scholar
  54. 54.
    Sham IH, Kwok CC, Che CM, Zhu N (2005) Borazine materials for organic optoelectronic applications. Chem Commun 28(28):3547–3549CrossRefGoogle Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A. Gaussian Inc, Wallingford, CTGoogle Scholar
  56. 56.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789CrossRefGoogle Scholar
  57. 57.
    Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220(1–2):122–128CrossRefGoogle Scholar
  58. 58.
    Kendall RA, Jr THD, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806CrossRefGoogle Scholar
  59. 59.
    Weiss S, Michaud H, Prietzel H, Krommer H (2003) Synthesis of 3,1-Benzothiazines by cyclisation of 2-Thioformylamino­diphenylacetylenes. Synlett 2003(14):2231–2233Google Scholar
  60. 60.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305CrossRefGoogle Scholar
  61. 61.
    Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.[J]. J Chem Phys 132(15):154104CrossRefGoogle Scholar
  62. 62.
    Scuseria GE (1991) The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD(T): application to C + 3. Chem Phys Lett 176(1):27–35CrossRefGoogle Scholar
  63. 63.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  64. 64.
    Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84(10):5687–5705CrossRefGoogle Scholar
  65. 65.
    Laidig KE, Bader RFW (1990) Properties of atoms in molecules: atomic polarizabilities. J Chem Phys 93(10):7213–7224CrossRefGoogle Scholar
  66. 66.
    Popelier PLA (2000) Atoms in molecules : an introduction. Pearson Education, LondonCrossRefGoogle Scholar
  67. 67.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  68. 68.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686CrossRefGoogle Scholar
  69. 69.
    Schleyer PVR, Maerker C, Dransfeld A, Haijun Jiao A (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318CrossRefGoogle Scholar
  70. 70.
    Baerends EJ et al (2013) ADF2013.01, SCM. Theoretical Chemistry, Vrije Universiteit, AmsterdamGoogle Scholar
  71. 71.
    Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42(24):8617–8636CrossRefGoogle Scholar
  72. 72.
    Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68(3):441–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations