Advertisement

Journal of Molecular Modeling

, 24:333 | Cite as

Electroic and optical properties of germanene/MoS2 heterobilayers: first principles study

  • Hao Li
  • Yue Yu
  • Xuyan Xue
  • Ju Xie
  • Hongzong Si
  • Jin Yong LeeEmail author
  • Aiping FuEmail author
Original Paper
  • 251 Downloads

Abstract

First principles calculations have been performed to investigate the structural, electronic, and optical properties of germanene/MoS2 heterostructures. The results show that a weak van der Waals coupling between germanene and MoS2 layers can lead to a considerable band-gap opening (53 meV) as well as the preserved Dirac cone with a linear band dispersion of germanene. The applied external electric filed can not only enhance the interaction strength between two layers, but also linearly control the charge transfer between germanene and MoS2 layers, and consequently lead to a tunable band gap. Furthermore, the reduction in the optical absorption intensity of the heterostructures with respect to the separated monolayers has been predicted. These findings suggest that the Ge/MoS2 hybrid can be designed as the device where both finite band gap and high carrier mobility are required.

Keywords

Germanene/MoS2 Heterobilayers Band gaps Electric field Optical properties 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 21103096), the Natural Science Foundation of Shandong Province (ZR2014AM025). We also thank the Taishan Scholar Program of Shandong Province (ts201511027).

Supplementary material

894_2018_3855_MOESM1_ESM.doc (124 kb)
ESM 1 (DOC 124 kb)

References

  1. 1.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  2. 2.
    Balandin AA (2011) Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat Mater 10:569–581Google Scholar
  3. 3.
    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRefGoogle Scholar
  4. 4.
    Dai L, Xue Y, Qu L, Choi H-J, Baek J-B (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115:4823–4892CrossRefGoogle Scholar
  5. 5.
    Perreault F, Faria AF de, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896Google Scholar
  6. 6.
    Kara A, Enriquez H, Seitsonen AP, Voon LLY, Vizzini S, Aufray B, Oughaddou H (2012) Review on silicene-new candidate for electronics. Surf Sci Rep 67:1–18CrossRefGoogle Scholar
  7. 7.
    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu CC, Zhong H, Han N, Lu J, Yao Y, Wu K (2016) Rise of silicene: a competitive 2D material. Prog Mater Sci 83:24–151CrossRefGoogle Scholar
  8. 8.
    Mortazavi B, Dianat A, Cuniberti G, Rabczuk T (2016) Application of silicene, germanene and stanene for Na or li ion storage: a theoretical investigation. Electrochim Acta 213:865–870CrossRefGoogle Scholar
  9. 9.
    Oughaddou H, Enriquez H, Tchalala MR, Yildirim H, Mayne AJ, Bendounan A, Dujardin G, Ali MA, Kara A (2015) Silicene, a promising new 2D material. Prog Surf Sci 90:46–83CrossRefGoogle Scholar
  10. 10.
    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126CrossRefGoogle Scholar
  11. 11.
    Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang SC, Duan W, Rubio A (2014) A stable two dimensional dumbbell stanene: a quantum spin hall insulator. Phys Rev B: Condens Matter Mater Phys 90:121408CrossRefGoogle Scholar
  12. 12.
    Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A, Georgiou T, Katsnelson MI, Eaves L, Morozov SV, Peres NMR, Leist J, Geim AK, Novoselov KS, Ponomarenko LA (2011) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950CrossRefGoogle Scholar
  13. 13.
    Vogt P, De PP, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108:155501CrossRefGoogle Scholar
  14. 14.
    Aufray B, Kara A, Vizzini S et al (2010) Graphene-like silicon nanoribbons on ag(110): a possible formation of silicene. Appl Phys Lett 96:666CrossRefGoogle Scholar
  15. 15.
    Zhu J, Schwingenschlögl U (2015) Silicene on MoS2: role of the van der Waals interaction. 2D Mater 2:045004Google Scholar
  16. 16.
    Cahangirov S, Sahin H, Lay G L, et al (2018) Erratum to: introduction to the physics of silicene and other 2D materials. Lect Notes Phys 930Google Scholar
  17. 17.
    Shih CJ, Wang QH, Son Y, Jin Z, Blankschtein D, Strano MS (2014) Tuning on-off current ratio and field-effect mobility in a MoS2-graphene Heterostructure via Schottky barrier modulation. ACS Nano 8:5790–5798CrossRefGoogle Scholar
  18. 18.
    Deng YX, Luo Z, Conrad NJ, Liu H, Gong YJ, Najmaei S, Ajayan PM, Lou J, Xu XF, Ye PD (2014) Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8:8292–8301CrossRefGoogle Scholar
  19. 19.
    Wang H, Yu LL, Lee YH, Shi YM, Hu A, Chin ML, Li LJ, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12:4674–4680CrossRefGoogle Scholar
  20. 20.
    Zhang L, Bampoulis P, Rudenko AN, Yao Q, van Houselt A, Poelsema B, Katnelson MI, Zandvliet HJW (2016) Structural and electronic properties of germanene on MoS2. Phys Rev Lett 116:256804–256810Google Scholar
  21. 21.
    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804–236809Google Scholar
  22. 22.
    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group IV elements and III-V binary compounds. Phys Rev B 80:155453–155458CrossRefGoogle Scholar
  23. 23.
    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett 12:113–118CrossRefGoogle Scholar
  24. 24.
    Li L, Lu SZ, Pan J, Qin Z, Wang YQ, Wang Y, Cao G, Du S, Gao HJ (2014) Buckled germanene formation on Pt(111). Adv Mater 26:4820–4824CrossRefGoogle Scholar
  25. 25.
    Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:3579–3587Google Scholar
  26. 26.
    Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet HJW (2014) Germanene termination of Ge2Pt crystals on Ge(110). J Phys Condens Matter 26:442001–442005CrossRefGoogle Scholar
  27. 27.
    Derivaz M, Dentel D, Stephan R, Hanf MC, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al(111). Nano Lett 15:2510CrossRefGoogle Scholar
  28. 28.
    Endo S, Kubo O, Nakashima N et al (2018) Germanene on Al(111) grown at nearly room temperature. Appl Phys Express 11:019201CrossRefGoogle Scholar
  29. 29.
    Li XD, Wu SQ, Zhu ZZ (2015) Band gap control and transformation of monolayer-MoS2-based hetero-bilayers. J Mater Chem C 3:9403–9411CrossRefGoogle Scholar
  30. 30.
    Li XD, Wu SQ, Zhou S, Zhu ZZ (2014) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res Lett 9:110–116CrossRefGoogle Scholar
  31. 31.
    Zhou S, Zhao J (2016) Electronic structures of germanene on MoS2: effect of substrate and molecular adsorption. J Phys Chem C 120:21691–21698CrossRefGoogle Scholar
  32. 32.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  33. 33.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7761CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  35. 35.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  36. 36.
    Segall MD, Lindan PJD, Probert MJ, Pichard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744CrossRefGoogle Scholar
  37. 37.
    Ma Y, Dai Y, Guo M, Niu C, Huang B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3:3883–3890CrossRefGoogle Scholar
  38. 38.
    Li XD, Yu S, Wu SQ, Wen YH, Zhou S, Zhu ZZ (2013) Structural and electronic properties of superlattice composed of graphene and monolayer MoS2. J Phys Chem C 117:15347–15353CrossRefGoogle Scholar
  39. 39.
    Hu W, Wang T, Zhang R, Yang J (2016) Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J Mater Chem C 4:1776–1781CrossRefGoogle Scholar
  40. 40.
    Liu NX, Li Z (2015) Electric field and strain effect on graphene-MoS2 hybrid structure: ab initio calculations. J Phys Chem Lett 6:3269–3275CrossRefGoogle Scholar
  41. 41.
    Gao N, Li JC, Jiang Q (2014) Tunable band gaps in silicene-MoS2 heterobilayers. Phys Chem Chem Phys 16:11673–11678CrossRefGoogle Scholar
  42. 42.
    Nigam S, Gupta SK, Majumder C, Pandey R (2015) Modulation of band gap by an applied electric field in silicene-based hetero-bilayers. Phys Chem Chem Phys 17:11324–11328CrossRefGoogle Scholar
  43. 43.
    Chen X, Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X, Zhang S, Ren T (2016) Electronic structure and optical properties of graphene/stanene heterobilayer. Phys Chem Chem Phys 18:16302–16309CrossRefGoogle Scholar
  44. 44.
    Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C, Sun X (2016) The electronic and optical properties of novel germanene and antimonene heterostructures. J Mater Chem C 4:5434–5441CrossRefGoogle Scholar
  45. 45.
    Chen X, Sun X, Jiang J, Liang Q, Yang Q, Meng R (2016) Electric and optical properties of germanene on single-layer BeO substrate. J Phys Chem C 120:20350–20356CrossRefGoogle Scholar
  46. 46.
    Zan W, Geng W, Liu H, Yao X (2016) Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures. Phys Chem Chem Phys 18:3159–3164CrossRefGoogle Scholar
  47. 47.
    Geng W, Zhao X, Zan W, Liu H, Yao X (2014) Effects of the electric field on the properties of ZnO-graphene composites: a density functional theory study. Phys Chem Chem Phys 16:3542–3548CrossRefGoogle Scholar
  48. 48.
    Li Y, Li F, Chen Z (2012) Graphene/fluorographene bilayer: considerable C-H⋅⋅⋅F-C hydrogen bonding and effective band structure engineering. J Am Chem Soc 134:11269–11275CrossRefGoogle Scholar
  49. 49.
    Li W, Wang T, Dai X, Ma Y, Tang Y (2017) Effects of electric field on the electronic structures of MoS2/arsenene van der Waals heterostructure. J Alloys Compd 705:486–491CrossRefGoogle Scholar
  50. 50.
    Liang D, He H, Lu P, Wu L, Zhang C, Guan P, Wang S (2017) Tunable band gaps in stanene/MoS2 heterostructures. J Mater Sci 52:5799–5806CrossRefGoogle Scholar
  51. 51.
    Li L, Zhao M (2014) Structures, energetics, andelectronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J Phys Chem C 118:19129–19138CrossRefGoogle Scholar
  52. 52.
    Mak KF, Lee HCJ, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805–136809CrossRefGoogle Scholar
  53. 53.
    Zhu J, Schwingenschlögl U (2015) Silicene on MoS2: role of the van der Waals interaction. 2D Mater 2:045004–045009CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center for Marine Biomass Fibers, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, College of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  2. 2.Department of ChemistrySungkyunkwan UniversitySuwonKorea
  3. 3.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina

Personalised recommendations