On the electron flow sequence driving the hydrometallation of acetylene by lithium hydride

  • Eduardo Chamorro
  • Mario Duque-Noreña
  • Savaş Kaya
  • Elizabeth Rincón
  • Patricia Pérez
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday


The sequence of the electronic flow driving the hydrometallation of acetylene by lithium hydride (and that of the opposite β-hydride elimination reaction from the alkenyl metal intermediate), was examined within the perspective provided by the bonding evolution theory (BET). The analysis was based on the application of catastrophe theory to the changes of the electron localization function topology along the intrinsic reaction coordinate. The description of the electronic processes occurring on the process was represented in terms of topological structural stability domains (SSDs) and the associated elementary bifurcation catastrophes. Within such a framework of representation, the “evolution” of the system through the different SSDs reveals the key chemical events driving the transformation, including the large polarization effect as a consequence of Pauli repulsion between ions of the positive cationic metal on the hydride domain, the activation of the CC triple bond to attack the cationic center, and the agostic stabilizing interactions involving the hardest cationic metal, followed by the attack of the hydride center. These results contribute to emphasizing the intrinsic value and usefulness of using topological-based approaches and associated tools to increase our knowledge and understanding of the subtleties underlying the electronic flow as nuclei evolve along the reaction coordinate, providing detailed and complementary insights in comparison to other interpretative tool such those based on orbital-based representations, concerning the intimate nature of the electronic rearrangement of key mechanistic processes in chemistry.

Graphical abstract

The sequence of the electron flow (indicated by letters a and b) along the intrinsic reaction path for the hydrometallation of acetylene by lithium hydride to yield ethenyl lithium via a four-membered transition structure (TS), as determined within the bonding evolution theory to provide the key chemical events driven the changes in the key bonding patterns. Blue arrow Main event on the side HC ≡ CH + LiH → TS, red arrow the TS → HLiC=CH2 pathway, green arrows relative motion of nuclei along the imaginary frequency at the position of TS on the intrinsic reaction coordinate.


Bonding evolution theory (BET) Electron localization function (ELF) Catastrophe theory Hydrometallation β-hydride elimination Ethenyl Lithium LiH 



We acknowledge the continuous support provided by Fondo Nacional de Ciencia y Tecnología (FONDECYT - Chile) through Projects 1181582 (EC) and 1180348 (PP).


  1. 1.
    Komine N, Hirano M, Komiya S (2015) Markovnikov-selective hydrometallation catalyzed by mono(phosphine)palladium(0) complexes: synthesis and reactivity of heterodinuclear hydridopalladium intermediate. J Synth Org Chem Jpn 73:616–631. CrossRefGoogle Scholar
  2. 2.
    Jambor R, Lycka A (2017) Organosilicon and -germanium hydrides in catalyst-free hydrometallation reactions. Eur J Inorg Chem 4887–4898.
  3. 3.
    Frihed TG, Furstner A (2016) Progress in the trans-reduction and trans-hydrometalation of internal alkynes. Applications to natural product synthesis. Bull Chem Soc Jpn 89:135–160. CrossRefGoogle Scholar
  4. 4.
    Chen B, Zhao CD, Huang JA (1990) The irc method in chemical-reactions .3. Reaction ergodography for the addition of lih dimer to acetylene. Acta Chim Sin 48:209–215Google Scholar
  5. 5.
    Zhao CD, Chen B, Huang JA (1989) Reaction ergodography for the additions of hli and its dimer to acetylene. Int J Quantum Chem 36:5–14. CrossRefGoogle Scholar
  6. 6.
    Kaufmann E, Sieber S, Schleyer PV (1989) Abinitio models for metalation and hydrogenolysis reactions involving organo-lithium compounds. J Am Chem Soc 111:121–125. CrossRefGoogle Scholar
  7. 7.
    Kaufmann E, Schleyer PV, Houk KN, Wu YD (1985) Abinitio mechanisms for the addition of CH3Li, HLi, and their dimers to formaldehyde. J Am Chem Soc 107:5560–5562. CrossRefGoogle Scholar
  8. 8.
    Houk KN, Paddonrow MN, Rondan NG, Wu YD, Brown FK, Spellmeyer DC, Metz JT, Li Y, Loncharich RJ (1986) Theory and modeling of stereoselective organic-reactions. Science 231:1108–1117. CrossRefPubMedGoogle Scholar
  9. 9.
    Gilmore K, Mohamed RK, Alabugin IV (2016) The Baldwin rules: revised and extended. Wiley Interdiscip Rev Comput Mol Sci 6:487–514. CrossRefGoogle Scholar
  10. 10.
    Xie JB, Li QL, Shi WJ, Ren FD, Song H (2015) Theoretical studies on H-M center dot center dot center dot pi (M=H, Li, Na, K) interactions involving the pi-electron donors, C2H2, C2H4 and C6H6. Indian J Chem A 54:709–719Google Scholar
  11. 11.
    Fohlmeister L, Stasch A (2015) Alkali metal hydride complexes: well-defined molecular species of saline hydrides. Aust J Chem 68:1190–1201. CrossRefGoogle Scholar
  12. 12.
    Fressigne C, Lhermet R, Girard AL, Durandetti M, Maddaluno J (2013) Influence of the acetylenic substituent on the intramolecular carbolithiation of alkynes: a DFT theoretical study. J Org Chem 78:9659–9669. CrossRefPubMedGoogle Scholar
  13. 13.
    Dudziec B, Marciniec B (2017) Double-decker silsesquioxanes: current chemistry and applications. Curr Org Chem 21:2794–2813. CrossRefGoogle Scholar
  14. 14.
    Pawluc P, Prukala W, Marciniec B (2010) Silylative coupling of olefins with vinylsilanes in the synthesis of pi-conjugated double bond systems. Eur J Org Chem 219–229.
  15. 15.
    Nakajima Y, Shimada S (2015) Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv 5:20603–20616. CrossRefGoogle Scholar
  16. 16.
    Cheng C, Hartwig JF (2015) Catalytic silylation of unactivated C-H bonds. Chem Rev 115:8946–8975. CrossRefPubMedGoogle Scholar
  17. 17.
    Frogneux X, Jacquet O, Cantat T (2014) Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Cat Sci Technol 4:1529–1533. CrossRefGoogle Scholar
  18. 18.
    Domingo LR, Rios-Gutierrez M, Perez P, Chamorro E (2016) Understanding the 2n+2n reaction mechanism between a carbenoid intermediate and CO2. Mol Phys 114:1374–1391. CrossRefGoogle Scholar
  19. 19.
    Lopez L, Ruiz P, Castro M, Quijano J, Duque-Norena M, Perez P, Chamorro E (2015) Understanding the thermal dehydrochlorination reaction of 1-chlorohexane. Revealing the driving bonding pattern at the planar catalytic reaction center. RSC Adv 5:62946–62956. CrossRefGoogle Scholar
  20. 20.
    Chamorro E, Ruiz P, Quijano J, Luna D, Restrepo L, Zuluaga S, Duque-Norena M (2014) Understanding the thermal 1s,5s hydrogen shift isomerization of ocimene. J Mol Model 20.
  21. 21.
    Rincon E, Zuloaga F, Chamorro E (2013) Global and local chemical reactivities of mutagen x and simple derivatives. J Mol Model 19:2573–2582. CrossRefPubMedGoogle Scholar
  22. 22.
    Domingo LR, Chamorro E, Perez P (2010) Understanding the high reactivity of the azomethine ylides in 3+2 cycloaddition reactions. Lett Org Chem 7:432–439CrossRefGoogle Scholar
  23. 23.
    Domingo LR, Chamorro E, Perez P (2010) Understanding the mechanism of non-polar diels-alder reactions. A comparative elf analysis of concerted and stepwise diradical mechanisms. Org Biomol Chem 8:5495–5504. CrossRefPubMedGoogle Scholar
  24. 24.
    Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624. CrossRefGoogle Scholar
  25. 25.
    Domingo LR, Chamorro E, Perez P (2008) An understanding of the electrophilic/nucleophilic behavior of electro-deficient 2,3-disubstituted 1,3-butadienes in polar diels-alder reactions. A density functional theory study. J Phys Chem A 112:4046–4053. CrossRefPubMedGoogle Scholar
  26. 26.
    Fuentealba P, Chamorro E, Santos JC (2007) Understanding and using the electron localization function. In: Toro-Labbe A (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 57–85Google Scholar
  27. 27.
    Chamorro E, Notario R, Santos JC, Perez P (2007) A theoretical scale for pericyclic and pseudopericyclic reactions. Chem Phys Lett 443:136–140. CrossRefGoogle Scholar
  28. 28.
    Chamorro E, Fuentealba P, Savin A (2003) Electron probability distribution in aim and elf basins. J Comput Chem 24:496–504. CrossRefPubMedGoogle Scholar
  29. 29.
    Chamorro E (2003) The nature of bonding in pericyclic and pseudopericyclic transition states: thermal chelotropic decarbonylations. J Chem Phys 118:8687–8698. CrossRefGoogle Scholar
  30. 30.
    Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory. J Phys Chem A 101:7277–7282. CrossRefGoogle Scholar
  31. 31.
    Andres J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (elf) analysis to valence-shell electron-pair repulsion (vsepr) inspired interpretation. Chem Commun 52:8183–8195. CrossRefGoogle Scholar
  32. 32.
    Andres J, Gonzalez-Navarrete P, Safont VS, Silvi B (2017) Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Phys Chem Chem Phys 19:29031–29046. CrossRefPubMedGoogle Scholar
  33. 33.
    Ashby EC, Noding SA (1980) Hydrometalation .6. Evaluation of lithium hydride as a reducing agent and hydrometalation agent. J Org Chem 45:1041–1044. CrossRefGoogle Scholar
  34. 34.
    Pi R, Friedl T, Schleyer PV, Klusener P, Brandsma L (1987) Representative metalation and reduction reactions of the superactive metal-hydrides LiH, NaH, and KH. J Org Chem 52:4299–4303. CrossRefGoogle Scholar
  35. 35.
    Pons JM, Santelli M (1988) Reductions promoted by low valent transition-metal complexes in organic-synthesis. Tetrahedron 44:4295–4312. CrossRefGoogle Scholar
  36. 36.
    Klusener PAA, Brandsma L, Verkruijsse HD, Schleyer PV, Friedl T, Pi R (1986) Superactive alkali-metal hydride metalation reagents—LiH, NaH, and KH. Angew Chemie-Int Ed Engl 25:465–466. CrossRefGoogle Scholar
  37. 37.
    Kowalski CJ, Lal GS (1986) Lithium hydride addition to ynolate anions—the mechanism of reductive ester homologation. J Am Chem Soc 108:5356–5357. CrossRefGoogle Scholar
  38. 38.
    Hong ZH, Ong DY et al (2016) Understanding the origins of nucleophilic hydride reactivity of a sodium hydride-iodide composite. Chem Eur J 22:7108–7114. CrossRefPubMedGoogle Scholar
  39. 39.
    Xu F, Peng LF et al (2015) One-shot double amination of sondheimer-wong diynes: synthesis of photo luminescent dinaphthopentalenes. Org Lett 17:3014–3017. CrossRefPubMedGoogle Scholar
  40. 40.
    Thom R (1994) Structural stability and morphogenesis: an outline of a general theory of models. Westview, LondonGoogle Scholar
  41. 41.
    Zeeman EC (1976) Catastrophe theory. Sci Am 234:65. CrossRefGoogle Scholar
  42. 42.
    Woodcock AER, Poston A (1974) Geometrical study of elementary catastrophes. Springer, BerlinCrossRefGoogle Scholar
  43. 43.
    Gilmore R (1993) Catastrophe theory for scientists and engineers. Dover, New YorkGoogle Scholar
  44. 44.
    Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: the electron localization function. Angew Chemie Int Ed 36:1809–1832CrossRefGoogle Scholar
  45. 45.
    Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371:683–686. CrossRefGoogle Scholar
  46. 46.
    Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74:1088–1096. CrossRefGoogle Scholar
  47. 47.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92:5397–5403. CrossRefGoogle Scholar
  48. 48.
    Andres J, Berski S, Domingo LR, Polo V, Silvi B (2011) Describing the molecular mechanism of organic reactions by using topological analysis of electronic localization function. Curr Org Chem 15:3566–3575CrossRefGoogle Scholar
  49. 49.
    Adjieufack AI, Ndassa IM, Patouossa I, Mbadcam JK, Safont VS, Oliva M, Andres J (2017) On the outside looking in: rethinking the molecular mechanism of 1,3-dipolar cycloadditions from the perspective of bonding evolution theory. The reaction between cyclic nitrones and ethyl acrylate. Phys Chem Chem Phys 19:18288–18302. CrossRefPubMedGoogle Scholar
  50. 50.
    Andres J, Gonzalez-Navarrete P, Safont VS (2014) Unraveling reaction mechanisms by means of quantum chemical topology analysis. Int J Quantum Chem 114:1239–1252. CrossRefGoogle Scholar
  51. 51.
    Krokidis X, Vuilleumier R, Borgis D, Silvi B (1999) A topological analysis of the proton transfer in H5O2+. Mol Phys 96:265–273. CrossRefGoogle Scholar
  52. 52.
    Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10. CrossRefGoogle Scholar
  53. 53.
    Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) A new look at electron localization. Angew Chemie-Int Ed 30:409–412. CrossRefGoogle Scholar
  54. 54.
    Grin Y, Savin A, Silvi B (2014) The elf perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond: fundamentals and models. Wiley-VCH, Weinheim, pp 345–382Google Scholar
  55. 55.
    Matito E, Silvi B, Duran M, Sola M (2006) Electron localization function at the correlated level. J Chem Phys 125:024301. CrossRefGoogle Scholar
  56. 56.
    Ponec R, Chaves J (2005) Electron pairing and chemical bonds. Electreon fluctuation and pair localization in ELF domains. J Comput Chem 26:1205–1213. CrossRefPubMedGoogle Scholar
  57. 57.
    Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454. CrossRefGoogle Scholar
  58. 58.
    Nouri A, Zahedi E, Ehsani M, Nouri A, Balali E (2018) Understanding the kinetics and molecular mechanism of the curtius rearrangement of 3-oxocyclobutane-1-carbonyl azide. Comput Theor Chem 1130:121–129. CrossRefGoogle Scholar
  59. 59.
    Cmikiewicz A, Gordon AJ, Berski S (2018) Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of elf and catastrophe theory perspective. Struct Chem 29:243–255. CrossRefGoogle Scholar
  60. 60.
    Berski S, Andres J, Silvi B, Domingo LR (2003) The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the diels-alder reaction between ethylene and 1,3-butadiene. J Phys Chem A 107:6014–6024. CrossRefGoogle Scholar
  61. 61.
    Polo V, Andres J, Berskit S, Domingo LR, Silvi B (2008) Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J Phys Chem A 112:7128–7136. CrossRefPubMedGoogle Scholar
  62. 62.
    Berski S, Ciunik LZ (2015) The mechanism of the formation of the hemiaminal and schiff base from the benzaldehyde and triazole studied by means of the topological analysis of electron localisation function and catastrophe theory. Mol Phys 113:765–781. CrossRefGoogle Scholar
  63. 63.
    Savin A (2005) On the significance of elf basins. J Chem Sci 117:473–475. CrossRefGoogle Scholar
  64. 64.
    Savin A (2005) The electron localization function (ELF) and its relatives: interpretations and difficulties. J Mol Struct THEOCHEM 727:127–131. CrossRefGoogle Scholar
  65. 65.
    Ayers PL, Boyd RJ et al (2015) Six questions on topology in theoretical chemistry. Comput Theor Chem 1053:2–16. CrossRefGoogle Scholar
  66. 66.
    Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. CrossRefGoogle Scholar
  67. 67.
    Schlegel HB (1995) Geometry optimization on potential energy surfaces. In: Ryarkony DR (ed) Modern electronic structure theory. World Scientific Publishing, SingaporeGoogle Scholar
  68. 68.
    Gonzalez C, Schlegel HB (1990) Reaction-path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. CrossRefGoogle Scholar
  69. 69.
    Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction-path following: higher-order implicit algorithms. J Chem Phys 95:5853–5860. CrossRefGoogle Scholar
  70. 70.
    Lee CT, Yang WT, Parr RG (1988) Development of thecolle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789. CrossRefGoogle Scholar
  71. 71.
    Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652. CrossRefGoogle Scholar
  72. 72.
    Frisch MJ, Trucks GW et al (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  73. 73.
    Fuentealba PC, Chamorro E, Santos JC (2007) Chapter 5 understanding and using the electron localization function. In: Toro-Labbe A (ed) Theoretical aspects of chemical reactivity. Elsevier, Amsterdam, pp 57–85CrossRefGoogle Scholar
  74. 74.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382. CrossRefPubMedGoogle Scholar
  75. 75.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. CrossRefGoogle Scholar
  76. 76.
    Hratchian HP, Schlegel HB (2005) Chapter 10. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, AmsterdamGoogle Scholar
  77. 77.
    Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363–368. CrossRefGoogle Scholar
  78. 78.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604. CrossRefGoogle Scholar
  79. 79.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. CrossRefGoogle Scholar
  80. 80.
    Andres J, Gracia L, Gonzalez-Navarrete P, Safont VS (2015) Chemical structure and reactivity by means of quantum chemical topology analysis. Comput Theor Chem 1053:17–30. CrossRefGoogle Scholar
  81. 81.
    Berski S, Andres J, Silvi B, Domingo LR (2006) New findings on the diels-alder reactions. An analysis based on the bonding evolution theory. J Phys Chem A 110:13939–13947. CrossRefPubMedGoogle Scholar
  82. 82.
    Gogsig TM (2012) New discoveries on the β-hydride elimination. Springer, BerlinCrossRefGoogle Scholar
  83. 83.
    O'Reilly ME, Dutta S, Veige AS (2016) Beta-alkyl elimination: fundamental principles and some applications. Chem Rev 116:8105–8145. CrossRefPubMedGoogle Scholar
  84. 84.
    Klimenko NM, Bozhenko KV, Strunina EV, Rykova EA, Temkin ON (1999) Ab initio calculations of minimum-energy pathways of the nucleophilic addition of the H anion, LiH molecule and Li+/H ion pair to acetylene and methylacetylene. J Mol Struct THEOCHEM 490:233–241. CrossRefGoogle Scholar
  85. 85.
    Houk KN, Rondan NG, Schleyer PV, Kaufmann E, Clark T (1985) Transition structures for additions of LiH and MeLi to ethylene and acetylene. J Am Chem Soc 107:2821–2823. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas, Departamento de Ciencias QuímicasUniversidad Andres BelloSantiagoChile
  2. 2.Faculty of Science, Department of ChemistryCumhuriyet UniversitySivasTurkey
  3. 3.Facultad de Ciencias, Instituto de Ciencias QuímicasUniversidad Austral de ChileValdiviaChile

Personalised recommendations