Advertisement

Theoretical investigation into the cooperativity effect between the intermolecular π∙π and H-bonding interactions in the curcumin∙cytosine∙H2O system

  • Jie Pan
  • Duan-lin Cao
  • Fu-de Ren
  • Jian-long Wang
  • Lu Yang
Original Paper
  • 41 Downloads

Abstract

In order to reveal the mechanism of drug action and design of DNA/RNA-targeted drugs containing aromatic rings, the cooperativity effects between the intermolecular π∙∙∙π and H-bonding interactions in curcumin(drug)∙∙∙cytosine(DNA/RNA base)∙∙∙H2O were investigated by the B3LYP-D3 and MP2(full) methods with the 6–311++G(2d,p) basis set. The π∙∙∙π interaction plays an important role in stabilizing the linear ternary complexes with the cooperativity effects, and the cyclic structures suffer the anticooperativity effects. The cooperativity or anticooperativity effects are notable, which could lead to a possible significant change in drug activity. The hydration is essentially the cooperativity or anticooperativity effect. These results were confirmed by the atoms in molecules (AIM), reduced density gradient (RDG), and surface electrostatic potentials analyses. The cyclic complexes are more stable, from which it can be deduced that the drug always links with the DNA/RNA base and H2O by the π∙∙∙π or H-bonding interactions, and only in this way can the drug activity be shown. Therefore, the designed DNA/RNA-targeted drugs should possess a certain number of hydrophilic groups in contact with the DNA/RNA base and H2O to reconcile drug activity by the cooperativity effect between the π∙∙∙π and H-bonding interactions, as is in agreement with many of the drugs in use.

Graphical abstract

RDG isosurface of ternary complex

Keywords

Cooperativity effect between the π∙π and H-bonding interactions Hydration Curcumin∙cytosine interaction MP2 Surface electrostatic potentials 

Notes

Compliance with ethical standards

Ethical statement

We allow the journal to review all the data, and we confirm the validity of the results. We have no financial relationships. The manuscript is not submitted to more than one journal, and it was not published previously. This work is not split up into several parts to submit. No data have been fabricated or manipulated.

Supplementary material

894_2018_3836_MOESM1_ESM.doc (33 mb)
ESM 1 (DOC 33799 kb)

References

  1. 1.
    Vijay D, Sastry GN (2010) The cooperativity of cation-π and π-π interactions. Chem Phys Lett 485:235–242CrossRefGoogle Scholar
  2. 2.
    Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chim Acta 126:1–14CrossRefGoogle Scholar
  3. 3.
    Hunter CA, Anderson HL (2009) What is cooperativity? Angew Chem Int Ed Engl 48:7488–7499CrossRefGoogle Scholar
  4. 4.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825CrossRefGoogle Scholar
  5. 5.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250CrossRefGoogle Scholar
  6. 6.
    Hesselmann A, Jansen G, Schutz M (2006) Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach. J Am Chem Soc 128:11730–11731CrossRefGoogle Scholar
  7. 7.
    Leist R, Frey JA, Ottiger P, Frey HM, Leutwyler S, Bachorz RA, Klopper W (2007) Nucleobase-fluorobenzene interactions: hydrogen bonding wins over π-stacking. Angew Chem Int Ed 46:7449–7452CrossRefGoogle Scholar
  8. 8.
    Tajika S, Tahera MA, Beitollahi H (2014) Mangiferin DNA biosensor using doublestranded DNA modified pencil graphite electrode based on guanine and adenine signals. J Electroanal Chem 720–721:134–138CrossRefGoogle Scholar
  9. 9.
    Tajika S, Tahera MA, Beitollahi H, Torkzadeh-Mahanid M (2015) Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta 1:60–64CrossRefGoogle Scholar
  10. 10.
    Badrinarayan P, Sastry GN (2014) Specificity rendering ‘hot-spots’ for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions. PLoS One 9:e113773CrossRefGoogle Scholar
  11. 11.
    Nasief NN, Hangauer D (2015) Additivity or cooperativity: which model can predict the influence of simultaneous incorporation of two or more functionalities in a ligand molecule? Eur J Med Chem 90:897–915CrossRefGoogle Scholar
  12. 12.
    Said AM, Hangauer DG (2015) Binding cooperativity between a ligand carbonyl group and a hydrophobic side chain can be enhanced by additional H-bonds in a distance dependent manner: a case study with thrombin inhibitors. Eur J Med Chem 96:405–424CrossRefGoogle Scholar
  13. 13.
    Zhen J-P, Wei X-C, Shi W-J, Huang Z-Y, Jin B, Zhou Y-K (2017) Cooperativity effect involving drug–DNA/RNA intermolecular interaction: a B3LYP-D3 and MP2 theoretical investigation on ketoprofen∙∙∙cytosine∙∙∙H2O system. J Biomol Struct Dyn 417:1–20CrossRefGoogle Scholar
  14. 14.
    Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Influence of the π-π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucl Acids Res 33:1779–1789CrossRefGoogle Scholar
  15. 15.
    Stoll I, Brodbeck R, Neumann B, Stammler H, Mattay J (2009) Controlling the self assembly of arene functionalised 2-aminopyrimidines by arene-perfluoroarene interaction and by silver(I) complex formation. CrystEngComm 11:306–317CrossRefGoogle Scholar
  16. 16.
    Rest C, Mayoral MJ, Fucke K, Schellheimer J, Stepanenko V, Fernández G (2014) Self-assembly and (hydro)gelation triggered by cooperative π−π and unconventional C−H···X hydrogen bonding interactions. Angew Chem Int Ed 53:700–705CrossRefGoogle Scholar
  17. 17.
    Rieth S, Li Z, Hinkle CE, Guzman CX, Lee JJ, Nehme SI, Braunschweig AB (2013) Superstructures of diketopyrrolopyrrole donors and perylenediimide acceptors formed by hydrogen-bonding and π···π stacking. J Phys Chem C 117:11347–11356CrossRefGoogle Scholar
  18. 18.
    Fu X, Li J, Simpson J (2012) Non-covalent interactions in the crystal structure of methyl 4-hydroxy-3-nitrobenzoate. Crystals 2:669–674CrossRefGoogle Scholar
  19. 19.
    Santos J, Grimm B, Illescas BM, Guldi DM, Martín N (2008) Cooperativity between π-π and H-bonding interactions−a supramolecular complex formed by C60 and exTTF. Chem Commun 45:5993–5995Google Scholar
  20. 20.
    Gray M, Goodman AJ, Carroll JB, Bardon K, Markey M, Cooke G, Rotello VM (2004) Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation. Org Lett 6:385–388CrossRefGoogle Scholar
  21. 21.
    Quiñonero D, Frontera A, Escudero D, Ballester P, Costa A, Deyà PM (2008) MP2 study of synergistic effects between X−H/π (X = C,N,O) and π−π interactions. Theor Chem Accounts 120:385–−393CrossRefGoogle Scholar
  22. 22.
    Estarellas C, Escudero D, Frontera A, Quiñonero D, Deya PM (2009) Theoretical ab initio study of the interplay between hydrogen bonding, cation−π and π−π interactions. Theor Chem Accounts 122:325–332CrossRefGoogle Scholar
  23. 23.
    Mignon P, Loverix S, De Proft F, Geerlings P (2004) Influence of stacking on hydrogen bonding: quantum chemical study on pyridine-benzene model complexes. J Phys Chem A 108:6038–6044Google Scholar
  24. 24.
    Escudero D, Frontera A, Quiñonero D, Deya PM (2008) Interplay between edge-to-face aromatic and hydrogen-bonding interactions. J Phys Chem A 112:6017–6022CrossRefGoogle Scholar
  25. 25.
    Ebrahimi A, Habibi M, Neyband RS, Gholipour AR (2009) Cooperativity of π-stacking and hydrogen bonding interactions and substituent effects on X-ben∥pyr···H−F complexes. Phys Chem Chem Phys 11:11424–11431CrossRefGoogle Scholar
  26. 26.
    Kulkarni C, Reddy SK, George SJ, Balasubramanian S (2011) Cooperativity in the stacking of benzene-1,3,5-tricarboxamide: the role of dispersion. Chem Phys Lett 515:226–230Google Scholar
  27. 27.
    Ninković DB, Janjić GV, Zarić SD (2012) Crystallographic and ab initio study of pyridine stacking interactions. Local nature of hydrogen bond effect in stacking interactions. Cryst Growth Des 12:1060–1063CrossRefGoogle Scholar
  28. 28.
    Anand M, Fernandez I, Schaefer HF, Wu JI (2016) Hydrogen bond−aromaticity cooperativity in self-assembling 4-pyridone chains. J Comput Chem 37:59–63CrossRefGoogle Scholar
  29. 29.
    Bommarito S, Peyret N, SantaLucia J (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 28:1929–1934CrossRefGoogle Scholar
  30. 30.
    Biot C, Wintjens R, Rooman M (2004) Stair motifs at protein-DNA interfaces: nonadditivity of H-bond, stacking, and cation-π interactions. J Am Chem Soc 126:6220–6221CrossRefGoogle Scholar
  31. 31.
    Mel’nikov SM, Sergeyev VG, Yoshikawa K, Takahashi H, Hatta I (1997) Cooperativity or phase transition? Unfolding transition of DNA cationic surfactant complex. J Chem Phys 107:6917–6924CrossRefGoogle Scholar
  32. 32.
    Escudero D, Estarellas C, Frontera A, Quiñonero D, Deyà PM (2010) Cooperativity effects between noncovalent interactions: are they important for Z-DNA stability? Chem Phys Lett 485:221–225CrossRefGoogle Scholar
  33. 33.
    Yurenko YP, Novotný J, Sklenář V, Marek R (2014) Exploring noncovalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys Chem Chem Phys 16:2072–2084CrossRefGoogle Scholar
  34. 34.
    Campo-Cacharrón A, Cabaleiro-Lago EM, Carrazana-García JA, Rodríguez-Otero J (2014) Interaction of aromatic units of amino acids with guanidinium cation: the interplay of π···π, X-H···π, and M+···π contacts. J Comput Chem 35:1290–1301CrossRefGoogle Scholar
  35. 35.
    Rubinson MA, Parkinson JA, Evstigneev MP (2015) Entropic binding mode preference in cooperative homo-dimeric drug–DNA recognition. Chem Phys Lett 624:12–14CrossRefGoogle Scholar
  36. 36.
    Mohammadgholi A, Rabbani CA, Fallah S (2013) Mechanism of the interaction of plant alkaloid vincristine with DNA and chromatin: spectroscopic study. DNA Cell Biol 32:228–235CrossRefGoogle Scholar
  37. 37.
    Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotech 6:497–503CrossRefGoogle Scholar
  38. 38.
    Li H, Mei WJ, Xu ZH, Pang DW, Ji LN, Lin ZH (2007) Electrochemistry of a novel monoruthenated porphyrin and its int’NA. J Electroanal Chem 600:243–250CrossRefGoogle Scholar
  39. 39.
    Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltammetry. J Photoch Photobio B 124:1–19CrossRefGoogle Scholar
  40. 40.
    Nelson SM, Ferguson LR, Denny WA (2007) Mutation research/fundamental and molecular mechanisms of mutagenesis. Mutat Res-DNA Repair 623:24–40CrossRefGoogle Scholar
  41. 41.
    Suckling CJ (2008) Molecular recognition and physicochemical properties in the discovery of selective antibacterial minor groove binders. J Phys Org Chem 21:575–583CrossRefGoogle Scholar
  42. 42.
    Wilson WD, Tanious FA, Mathis A, Tevis JE, Hall DW (2008) Antiparasitic compounds that target DNA. Biochimie 90:999–1014CrossRefGoogle Scholar
  43. 43.
    Basu A, Jaisankar P, Kumar GS (2012) Synthesis of novel 9-O-N -aryl/aryl–alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorgan Med Chem 20:2498–2505CrossRefGoogle Scholar
  44. 44.
    Tian X, Li F, Zhu L, Ye BX (2008) Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA. J Electroanal Chem 621:1–6CrossRefGoogle Scholar
  45. 45.
    Mansouri-Torshizi H, Moghaddam M, Divsalar A, Saboury AA (2008) 2,2'-Bipyridinebutyldithiocarbamatoplatinum(II) and palladium(II) complexes: synthesis, characterization, cytotoxicity, and rich DNA-binding studies. Bioorg Med Chem 16:9616–9625CrossRefGoogle Scholar
  46. 46.
    Bailly C, Harny F, Waring MJ (1996) Cooperativity in the binding of echinomycin to DNA fragments containing closely spaced CpG sites. Biochemistry 35:1150–1161CrossRefGoogle Scholar
  47. 47.
    Gilbert DA, Feigon J (1992) Proton NMR study of the [d(ACGTATACGT)]2-2-chinomycin complex: conformational changes between echinomycin binding sites. Nucleic Acids Res 20:2411–2420CrossRefGoogle Scholar
  48. 48.
    Gilbert DE, Feigon J (1991) The DNA sequence at echinomycin binding sites determines the structural changes induced by drug binding: NMR studies of echinomycin binding to [d(ACGTACGT)]2 and [d(TCGATCGA)]2. Biochemistry 30:2483–2494CrossRefGoogle Scholar
  49. 49.
    Sargolzaeia J, Rabbani CA, Mollaeia H, Deezagi A (2017) Spectroscopic analysis of the interaction of valproic acid with histoneH1 in solution and in chromatin structure. Int J Biol Macromol 99:427–432CrossRefGoogle Scholar
  50. 50.
    Islama MM, Pandya P, Chowdhury SR, Kumarb S, Kumar GS (2008) Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectrosco-pic and molecular modeling studies. J Mol Struct 891:498–507CrossRefGoogle Scholar
  51. 51.
    Harris SA, Gavathiotis E, Searle MS, Orozco M, Laughton CA (2001) Cooperativity in drug DNA recognition: a molecular dynamics study. J Am Chem Soc 123:12658–12663CrossRefGoogle Scholar
  52. 52.
    Gavathiotis E, Sharman GJ, Searle MS (2000) Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition: solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)2. Nucleic Acids Res 28:728–735CrossRefGoogle Scholar
  53. 53.
    Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB (1997) Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257CrossRefGoogle Scholar
  54. 54.
    Searle MS, Embrey KJ (1990) Sequence-specific interaction of Hoescht 33258 with the minor grooVe of an adenine-tract DNA duplex studied in solution by H NMR spectroscopy. Nucleic Acids Res 18:3753–3762CrossRefGoogle Scholar
  55. 55.
    Bendic C, Enache M, Volanschi E (2005) Analysis of actinomycin D–DNA model complexes using a quantum-chemical criterion: Mulliken overlap populations. J Mol Graphics Modell 24:10–16CrossRefGoogle Scholar
  56. 56.
    Li C, Liu SL, Guo LH, Chen DP (2005) A new chemically amplified electrochemical system for DNA detection in solution. Electrochem Commun 7:23–28CrossRefGoogle Scholar
  57. 57.
    Moravek Z, Neidle S, Schneider B (2002) Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res 30:1182–1191CrossRefGoogle Scholar
  58. 58.
    Kabir A, Hossain M, Kumar GS (2013) Thermodynamics of the DNA binding of biogenic polyamines: calorimetric and spectroscopic investigations. J Chem Thermodyn 57:445–453CrossRefGoogle Scholar
  59. 59.
    Hasanzadeh M, Shadjou N (2016) Pharmacogenomic study using bio- and nanobioelectrochemistry: drug–DNA interaction. Mater Sci Eng C 61:1002–1017CrossRefGoogle Scholar
  60. 60.
    Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968CrossRefGoogle Scholar
  61. 61.
    Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32:1053–1064CrossRefGoogle Scholar
  62. 62.
    Haris P, Mary V, Aparna P, Dileep KV, Sudarsanakumar C (2017) A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochim Acta A 175:155–163CrossRefGoogle Scholar
  63. 63.
    Nafisi S, Adelzadeh M, Norouzi Z, Sarbolouki MN (2009) Curcumin binding to DNA and RNA. DNA Cell Biol 28:201–208CrossRefGoogle Scholar
  64. 64.
    Basu A, Kumar GS (2013) Biophysical studies on curcumin–deoxyribonucleic acid interaction: spectroscopic and calorimetric approach. Int J Biol Macromol 62:257–264CrossRefGoogle Scholar
  65. 65.
    Mathew KV, Unnikrishnan NV, Sudarsanakumar C (2011) Molecular dynamics simulations and binding free energy analysis of DNAminor groove complexes of curcumin. J Mol Model 17:2805–2816CrossRefGoogle Scholar
  66. 66.
    Kurien BT, Dillon SP, Dorri Y, D'Souza A, Scofield RH (2011) Curcumin does not bind or intercalate into DNA and a note on the gray side of curcumin. Int J Cancer 128:242–245CrossRefGoogle Scholar
  67. 67.
    Li X-L, Hu Y-J, Mi R, Li X-Y, Li P-Q, Ouyang Y (2013) Spectroscopic exploring the affinities, characteristics, andmode of binding interaction of curcumin with DNA. Mol Biol Rep 40:4405–4413CrossRefGoogle Scholar
  68. 68.
    Shahabadi N, Falsafi M, Moghadam NH (2013) DNA interaction studies of a novel cu(II) complex as an intercalator containing curcumin and bathophenanthroline ligands. J Photochem Photobiol B Biol 122:45–51CrossRefGoogle Scholar
  69. 69.
    Chandrasekar T, Pravin N, Raman N (2014) Biosensitive metal chelates from curcumin analogues: DNA unwinding and anti-microbial evaluation. Inorg Chem Commun 43:45–50CrossRefGoogle Scholar
  70. 70.
    Kumar D, Basu S, Parija L, Rout D, Manna S, Dandapat J, Debat PR (2016) Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed Pharmacother 81:31–37CrossRefGoogle Scholar
  71. 71.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford Google Scholar
  72. 72.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  73. 73.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, OxfordGoogle Scholar
  74. 74.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  75. 75.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comp Mol Sci 1:153–163Google Scholar
  76. 76.
    Lu T (2014) Multiwfn: a multifunctional wavefunction analyzer, version 3.3.5. J Comput Chem 33:580–593Google Scholar
  77. 77.
    Duijineveldt FB, Duijineveldt-van de Rijdt JCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885CrossRefGoogle Scholar
  78. 78.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  79. 79.
    Alonso JL, Vaquero V, Peña I, Lόpez JC, Mata S, Caminati W (2013) All five forms of cytosine revealed in the gas phase. Angew Chem Int Edit 52:2331–2334CrossRefGoogle Scholar
  80. 80.
    Bazsó G, Tarczay G, Fogarasi G, Szalay PG (2011) Tautomers of cytosine and their excited electronic states: a matrix isolation spectroscopic and quantum chemical study. Phys Chem Chem Phys 13:6799–6807CrossRefGoogle Scholar
  81. 81.
    Reed AE, Curtis LA, Weinhold FA (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  82. 82.
    Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and diminutive unusual weak bonding in F3CX∙∙∙HMgH∙∙∙Y and F3CX∙∙∙Y∙∙∙HMgH trimers (X = cl, Br; Y = HCN, and HNC). J Phys Chem A 114:12106–12111CrossRefGoogle Scholar
  83. 83.
    Escudero D, Frontera A, Quiñnero D, Deyà PM (2008) Interplay between cation-π and hydrogen bonding interactions. Chem Phys Lett 456:257–261CrossRefGoogle Scholar
  84. 84.
    Haq I (2002) Thermodynamics of drug–DNA interactions. Arch Biochem Biophys 403:1–15CrossRefGoogle Scholar
  85. 85.
    Brovarets’ OO, Zhurakivskyab RO, Hovorun DM (2014) Does the tautomeric status of the adenine bases change upon the dissociation of the a* Asyn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Phys Chem Chem Phys 16:3715–3525CrossRefGoogle Scholar
  86. 86.
    Zabardasti A, Zare N, Arabpour M (2011) Theoretical study of dihydrogen bonded clusters of water with tetrahydroborate. Struct Chem 22:691–695CrossRefGoogle Scholar
  87. 87.
    Zabardasti A, Kakanejadi A, Moosavi S, Bigleri Z, Solimannejad M (2010) Anticooperativity in dihydrogen bonded clusters of ammonia and BeH4 2−. J Mol Struct (THEOCHEM) 945:97–100CrossRefGoogle Scholar
  88. 88.
    Meng R, Cao X, Hu S, Hu L (2017) Theoretical insight into the solvent effect of H2O and formamide on the cooperativity effect in HMX complex. J Mol Model 23:237CrossRefGoogle Scholar
  89. 89.
    Xie ZB, Hu SQ, Cao X (2016) Theoretical insight into the influence of molecular ratio on the binding energy and mechanical property of HMX/2-picoline-N-oxide cocrystal, cooperativity effect and surface electrostatic potential. Mol Phys 114:1–13CrossRefGoogle Scholar
  90. 90.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691CrossRefGoogle Scholar
  91. 91.
    Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF). J Mol Struct Theochem 307:55–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jie Pan
    • 1
  • Duan-lin Cao
    • 1
  • Fu-de Ren
    • 1
  • Jian-long Wang
    • 1
  • Lu Yang
    • 2
  1. 1.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanChina
  2. 2.Software School of North University of ChinaTaiyuanChina

Personalised recommendations