Advertisement

Effects of different dopant elements on structures, electronic properties, and sensitivity characteristics of nitromethane

  • Mi Zhong
  • Han Qin
  • Qi-Jun Liu
  • Cheng-Lu Jiang
  • Feng Zhao
  • Hai-Lin Shang
  • Fu-Sheng Liu
  • Bin Tang
Original Paper
  • 67 Downloads

Abstract

In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.

Graphical abstract

The valence and conduction band edge positions as well as defect levels of pure and X-doped NM

Keywords

Doped defects Sensitivity Nitromethane First-principles calculations 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574254 and 11272296), the Fundamental Research Funds for the Central Universities (Grant No. 2018GF08), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant No. D-CX201735), and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University.

Supplementary material

894_2018_3832_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 35 kb)

References

  1. 1.
    Dremin AN, Savrov SD, Andrievskii AN (1965) Investigation of shock initiation to detonation in nitromethane, combustion. Explos Shock Waves 1(2):1–6CrossRefGoogle Scholar
  2. 2.
    Ramaswamy AL (2001) Microscopic initiation mechanisms in energetic material crystals. J Energ Mater 19:195–217CrossRefGoogle Scholar
  3. 3.
    Brill TB, James KJ (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev 93:2667–2692CrossRefGoogle Scholar
  4. 4.
    Gilman JJ (1995) Chemical reactions at detonation fronts in solids. Philos Mag B 71:1057–1068CrossRefGoogle Scholar
  5. 5.
    Campbell AW, Davis WC, Ramsay JB, Travis JR (1961) Shock initiation of solid explosives. Phys Fluids 4:511–521CrossRefGoogle Scholar
  6. 6.
    Zhang YX, Bauer SH (1997) Modeling the decomposition of nitromethane, induced by shock heating. J Phys Chem B 101:8717–8726CrossRefGoogle Scholar
  7. 7.
    Winey JM, Gupta YM (1997) Shock-induced chemical changes in neat nitromethane: use of time-resolved Raman spectroscopy. J Phys Chem B 101:10733–10743CrossRefGoogle Scholar
  8. 8.
    Winey JM, Gupta YM (1997) UV−visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane. J Phys Chem A 101:9333–9340Google Scholar
  9. 9.
    Zaug JM, Armstrong MR, Crowhurst JC, Feranti L, Swan R, Gross R, Teshlich NE, Wall M, Austin RA, Fried LE (2014) Ultrafast dynamic response of single crystal PETN and Beta-HMX. International detonation symposium #15, San Francisco, 13–18 July 2014 Google Scholar
  10. 10.
    Dattelbaum DM, Sheffield SA (2012) Shock-induced chemical reactions in simple organic molecules. AIP Conf Proc 1426:627–632CrossRefGoogle Scholar
  11. 11.
    Xiao HM, Li YF (1995). Sci China B 25:23–28Google Scholar
  12. 12.
    Kunz AB (1996) Ab initio investigation of the structure and electronic properties of the energetic solids TATB and RDX. Phys Rev B 53:9733–9738CrossRefGoogle Scholar
  13. 13.
    Kuklja MM, Kunz AB (1999) Ab initio simulation of defects in energetic materials: hydrostatic compression of cyclotrimethylene trinitramine. J Appl Phys 86:4428–4434CrossRefGoogle Scholar
  14. 14.
    Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982CrossRefGoogle Scholar
  15. 15.
    Liu H, Zhao J, Wei D, Gong Z (2006) Structural and vibrational properties of solid nitromethane under high pressure by density functional theory. J Chem Phys 124:124501CrossRefGoogle Scholar
  16. 16.
    Zhu W, Xiao J, Ji G, Zhao F (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. J Phys Chem B 111:12715–12722CrossRefGoogle Scholar
  17. 17.
    Zerilli FJ, Hooper JP, Kuklja MM (2007) Ab initio studies of crystalline nitromethane under high pressure. J Chem Phys 126:114701CrossRefGoogle Scholar
  18. 18.
    Zhang H, Xu LJ, Zhang FC, Cheng XL, An GW (2009) First principles study on the structure and electronic properties of 2-nitrimino-1-nitroimidazolidine. Int J Quantum Chem 109:720–725CrossRefGoogle Scholar
  19. 19.
    Lv L, Wei Y, Tao Z, Yang F, Wu D, Yang M (2017) Effect of an external electric field on the C-N cleavage reactions in nitromethane and triaminotrinitrobenzene. Comput Theor Chem 1117:215–219CrossRefGoogle Scholar
  20. 20.
    Appalakondaiah S, Vaitheeswaran G, Lebègue S (2013) A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane. J Chem Phys 138:184705CrossRefGoogle Scholar
  21. 21.
    Chang J, Zhou XL, Zhao GP, Wang L (2013) Science China physics, a first-principles study of the structural, electronic and elastic properties of solid nitromethane under pressure. Mech Astron 56:1874–1881CrossRefGoogle Scholar
  22. 22.
    Pan Y, Zhu W, Xiao H (2017) Theoretical studies of a series of azaoxaisowurtzitane cage compounds with high explosive performance and low sensitivity. Comput Theor Chem 1114:77–86CrossRefGoogle Scholar
  23. 23.
    Dong GX, Cheng XL, Ge SH (2014). Chin J At Mol Phys 31:687–694Google Scholar
  24. 24.
    Vaitheeswaran G, Babu KR, Yedukondalu N, Appalakondaiah S (2014) Structural properties of solid energetic materials: a van der Waals density functional study. Comput Chem Mol Simul 106:1219–1223Google Scholar
  25. 25.
    Zhong M, Liu QJ, Qin H, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017) Influences of pressure on methyl group, elasticity, sound velocity and sensitivity of solid nitromethane. Eur Phys J B 90:115CrossRefGoogle Scholar
  26. 26.
    Decker SA, Woo TK, Wei D, Zhang F (2002) Ab initio molecular dynamics simulations of multimolecular collisions of nitromethane and compressed liquid nitromethane. In: Proceedings of the 12th international detonation symposium, San Diego, pp 724–730Google Scholar
  27. 27.
    Maillet JB, Bourasseau E, Vallverdu G, Desbiens N (2011) Molecular simulations of shock to detonation transition in nitromethane. arXiv: 1107.3453Google Scholar
  28. 28.
    Sorescu DC, Rice BM, Thompson DL (2001) Molecular dynamics simulations of liquid nitromethane. J Phys Chem A 105:9336–9346CrossRefGoogle Scholar
  29. 29.
    Wei DQ, Zhang F, Woo TK (2002) Ab initio molecular dynamics simulations of molecular collisions of nitromethane. AIP Conf Proc 620:407–410CrossRefGoogle Scholar
  30. 30.
    Kabadi VN, Rice BM (2004) Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane. J Phys Chem A 108:532–540CrossRefGoogle Scholar
  31. 31.
    Wu CL, Zhang SH, Gou RJ, Han G, Zhu SF (2018) Theoretical insight into the effect of solvent polarity on the formation and morphology of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane (CL-20)/2, 4, 6-trinitro-toluene (TNT) cocrystal explosive. Comput Theor Chem 1127:22–30CrossRefGoogle Scholar
  32. 32.
    Decker SA, Chau D, Woo TK, Zhang F (2005) Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions. In: Jiang Z (ed) Shock waves. Springer, Berlin, pp 1193–1198Google Scholar
  33. 33.
    Zheng L, Luo SN, Thompson DL (2006) Molecular dynamics simulations of melting and the glass transition of nitromethane. J Chem Phys 124:154504CrossRefGoogle Scholar
  34. 34.
    Boyd S, Murray JS, Politzer P (2009) Molecular dynamics characterization of void defects in crystalline (1, 3, 5-trinitro-1, 3, 5-triazacyclohexane). J Chem Phys 131:204903CrossRefGoogle Scholar
  35. 35.
    Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010) Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations. Phys Rev Lett 105:188302CrossRefGoogle Scholar
  36. 36.
    Zhu W, Xiao J, Zhu W, Xiao H (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088CrossRefGoogle Scholar
  37. 37.
    He L, Sewell TD, Thompson DL (2011) Molecular dynamics simulations of shock waves in oriented nitromethane single crystals. J Chem Phys 134:124506CrossRefGoogle Scholar
  38. 38.
    Han S, van Duin ACT, Goddard III WA, Strachan A (2011) Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics. J Phys Chem B 115:6534–6540CrossRefGoogle Scholar
  39. 39.
    Guo F, Cheng X, Zhang H (2012) Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition. J Phys Chem A 116:3514–3520CrossRefGoogle Scholar
  40. 40.
    Duan XH, Li WP, Pei CH, Zhou XQ (2013) Molecular dynamics simulations of void defects in the energetic material HMX. J Mol Model 19:3893–3899CrossRefGoogle Scholar
  41. 41.
    Rivera-Rivera LA, Siavosh-Haghighi A, Sewell TD, Thompson DL (2014) A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane. Chem Phys Lett 608:120–125CrossRefGoogle Scholar
  42. 42.
    Xu K, Wei DQ, Chen XR, Ji GF (2014) Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations. J Mol Model 20:2438CrossRefGoogle Scholar
  43. 43.
    Bedrov D, Ayyagari C, Smith GD, Sewell TD, Menikoff R, Zaug JM (2001) Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field. J Computer-Aided Mater Des 8:77–85CrossRefGoogle Scholar
  44. 44.
    Rashid MAM, Cho SG, Choi CH (2018) Heat of formation prediction by G4MP2-SFM schemes: an application to various nitroazole derivatives. Comput Theor Chem 1130:148–159CrossRefGoogle Scholar
  45. 45.
    Xiao HM, Wang ZY, Yao JM (1985) The theoretical study on sensitivity and stability of polynitro arenas I. nitro derivatives of aminobenzenes. Acta Chim Sin 43:14–18Google Scholar
  46. 46.
    Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424CrossRefGoogle Scholar
  47. 47.
    Xiao HM, Fan JF, Gu ZM, Dong HS (1998) Theoretical study on pyrolysis and sensitivity of energetic compounds:(3) nitro derivatives of aminobenzenes. Chem Phys 226:15–24CrossRefGoogle Scholar
  48. 48.
    Oxley J, Smith J, Buco R, Huang J (2007) A study of reduced-sensitivity RDX[J]. journal of energetic materials. J Energ Mater 25:141–160CrossRefGoogle Scholar
  49. 49.
    Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783CrossRefGoogle Scholar
  50. 50.
    Zeman S (2003) New aspects of impact reactivity of polynitro compounds. Part IV. Allocation of polynitro compounds on the basis of their impact sensitivities. Propellants Explos Pyrotech 28:308–313CrossRefGoogle Scholar
  51. 51.
    Keshavarz MH, Pouretedal HR (2005) Simple empirical method for prediction of impact sensitivity of selected class of explosives. J Hazard Mater 124:27–33CrossRefGoogle Scholar
  52. 52.
    Doherty RM, Watt DS (2008) Relationship between RDX properties and sensitivity. Propellants Explos Pyrotech 33:4–13CrossRefGoogle Scholar
  53. 53.
    Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982CrossRefGoogle Scholar
  54. 54.
    Zhu W, Xiao HM (2010) First-principles band gap criterion for impact sensitivity of energetic crystals: a review. Struct Chem 21:657–665CrossRefGoogle Scholar
  55. 55.
    Dremin AN, Rozanov OK, Savrov SD, Yakushev VV (1967) Shock initiation of detonation in nitroglycerin, combustion. Explos Shock Waves 3:6–10CrossRefGoogle Scholar
  56. 56.
    Wang F, Du H, Zhang J, Gong X (2012) First-principle study on high-pressure behavior of crystalline polyazido-1, 3, 5-triazine. J Phys Chem C 116:6745–6753CrossRefGoogle Scholar
  57. 57.
    Keshavarz MH, Pouretedal HR, Semnani A (2007) Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules. J Hazard Mater 141:803–807CrossRefGoogle Scholar
  58. 58.
    Keshavarz MH (2007) Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives. J Hazard Mater 148:648–652CrossRefGoogle Scholar
  59. 59.
    Wang G, Xiao H, Ju X, Gong X (2007) Theoretical studies on densities, detonation velocities and pressures and electric spark sensitivities of energetic materials. Acta Chim Sin 65:517–524Google Scholar
  60. 60.
    Xiao HM (1993) The molecular orbital theory of nitro-group compounds. National Defence Industry Press, BeijingGoogle Scholar
  61. 61.
    Song XS, Cheng XL, Yang XD, He B (2006) Relationship between the bond dissociation energies and impact sensitivities of some nitro-explosives. Propellants Explos Pyrotech 31:306–310CrossRefGoogle Scholar
  62. 62.
    Zhang H, Cheung F, Zhao F, Cheng XL (2009) Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials. Int J Quantum Chem 109:1547–1552CrossRefGoogle Scholar
  63. 63.
    Türker L (2009) Tunneling effect and impact sensitivity of certain explosives. J Hazard Mater 169:819–823CrossRefGoogle Scholar
  64. 64.
    Chen F, Cheng XL (2011) A first-principles investigation of the hydrogen bond interaction and the sensitive characters in cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole. Int J Quantum Chem 111:4457–4464CrossRefGoogle Scholar
  65. 65.
    Kim CK, Cho SG, Li J, Kim CK, Lee HW (2011) QSPR studies on impact sensitivities of high energy density molecules. Bull Kor Chem Soc 32:4341–4346CrossRefGoogle Scholar
  66. 66.
    Xiao HM, Zhu WH, Xiao JJ, Wang GX, Pei XQ (2012) Theoretical studies on sensitivity criterion of energetic materials-from molecular, crystals, to composite materials. Chin J Energ Mater 20:514–527Google Scholar
  67. 67.
    Courtecuisse S, Cansell F, Fabre D, Petitet J (1995) Phase transitions and chemical transformations of nitromethane up to 350 C and 35 GPa. J Chem Phys 102:968–974CrossRefGoogle Scholar
  68. 68.
    Wang YP, Liu FS, Liu QJ, Zhang NC (2016) Raman spectra of liquid nitromethane under singly shocked conditions. Chin J Chem Phys 29:161–166CrossRefGoogle Scholar
  69. 69.
    Fedorov AV, Mikhaylov AL, Men'Shikh AV, Nazarov DV, Finyushin SA, Davydov VA (2010) On the stability of the detonation wave front in the high explosive liquid mixture tetranitromethane/nitrobenzene. J Energ Mater 28:205–215CrossRefGoogle Scholar
  70. 70.
    Campbell AW, Malin ME, Holland TE (1956) Temperature effects in the liquid explosive, nitromethane. J Appl Phys 27:963CrossRefGoogle Scholar
  71. 71.
    Mao HK, Bell PM, Hemley RJ (1985) Ultrahigh pressures: optical observations and Raman measurements of hydrogen and deuterium to 1.47 mbar, Phys. Rev Let 55:99–102CrossRefGoogle Scholar
  72. 72.
    Xu J, Wu LZ, Shen RQ, Ye YH, Hu Y (2011) Effects of dopants and confined windows on laser initiation sensitivity of explosives. Chin J Explos Propellants 34:77–85Google Scholar
  73. 73.
    Sućeska M (1991) Calculation of the detonation properties of C, H, N, O explosives. Propellants Explos Pyrotech 16:197–202CrossRefGoogle Scholar
  74. 74.
    Lian P, Li YN, Li H, Huo H, Wang BZ, Lai WP (2017) A DFT study on the structure and property of novel nitroimidazole derivatives as high energy density materials. Comput Theor Chem 1118:39–44CrossRefGoogle Scholar
  75. 75.
    Kuklja MM, Kunz AB (1999) Simulation of defects in energetic materials. 3. The structure and properties of RDX crystals with vacancy complexes. J Phys Chem B 103:8427–8431CrossRefGoogle Scholar
  76. 76.
    Coffey CS (1981) Phonon generation and energy localization by moving edge dislocations. Phys Rev B 24:6984CrossRefGoogle Scholar
  77. 77.
    Dlott DD, Fayer MD (1990) Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry. J Chem Phys 92:3798–3812CrossRefGoogle Scholar
  78. 78.
    Elban WL, Armstrong RW, Yoo KC, Rosemeier RG, Yee RY (1989) X-ray reflection topographic study of growth defect and microindentation strain fields in an RDX explosive crystal. J Mater Sci 24:1273–1280CrossRefGoogle Scholar
  79. 79.
    Miles MH, Dickinson JT (1982) Fracto-emission from pentaerythritol tetranitrate and cyclotetramethylene tetranitramine single crystal. Appl Phys Lett 41:924–926CrossRefGoogle Scholar
  80. 80.
    Kuklja MM, Stefanovich EV, Kunz AB (2000) An excitonic mechanism of detonation initiation in explosives. J Chem Phys 112:3417–3423CrossRefGoogle Scholar
  81. 81.
    Kuklja MM, Kunz AB (2001) Electronic structure of molecular crystals containing edge dislocations. J Appl Phys 89:4962–4970CrossRefGoogle Scholar
  82. 82.
    Kuklja MM, Kunz AB (2000) Compression-induced effect on the electronic structure of cyclotrimethylene trinitramine containing an edge dislocation. J Appl Phys 87:2215–2218CrossRefGoogle Scholar
  83. 83.
    Kuklja MM (2003) On the initiation of chemical reactions by electronic excitations in molecular solids. Appl Phys A Mater Sci Process 76:359–366CrossRefGoogle Scholar
  84. 84.
    Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) Role of electronic excitations in explosive decomposition of solids. J Appl Phys 89:4156–4166CrossRefGoogle Scholar
  85. 85.
    Kuklja MM, Kunz AB (2000) Ab initio simulation of defects in energetic materials. J Phys Chem Solids 61:35–44CrossRefGoogle Scholar
  86. 86.
    Reed EJ, Joannopoulos JD, Fried LE (2000) Electronic excitations in shocked nitromethane. Phys Rev B 62:16500CrossRefGoogle Scholar
  87. 87.
    Duan XH, Li WP, Pei CH, Zhou XQ (2013) Molecular dynamics simulations of void defects in the energetic material HMX. J Mol Model 19:3893–3899CrossRefGoogle Scholar
  88. 88.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist 220:567–570Google Scholar
  89. 89.
    Perdew JP, Burke K, Ernzerhof M (1996) M. D. of physics and NOL 70118 J. Quantum theory group Tulane University. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  90. 90.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  91. 91.
    Vaitheeswaran G, Babu KR, Yedukondalu N, Appalakondaiah S (2014) Structural properties of solid energetic materials: a van der Waals density functional study. Curr Sci 106:1219–1223Google Scholar
  92. 92.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  93. 93.
    Trevino SF, Prince E, Hubbard CR (1980) Refinement of the structure of solid nitromethane. J Chem Phys 73:2996–3000CrossRefGoogle Scholar
  94. 94.
    Karpowicz RJ, Brill TB (1983) Librational motion of hexahydro-1, 3, 5-trinitro-s-triazine based on the temperature dependence of the nitrogen-14 nuclear quadrupole resonance spectra: the relationship to condensed-phase thermal decomposition. J Phys Chem 87:2109–2112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mi Zhong
    • 1
    • 2
  • Han Qin
    • 1
    • 2
  • Qi-Jun Liu
    • 1
    • 2
  • Cheng-Lu Jiang
    • 1
    • 2
  • Feng Zhao
    • 3
  • Hai-Lin Shang
    • 3
  • Fu-Sheng Liu
    • 1
    • 2
  • Bin Tang
    • 4
  1. 1.School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  4. 4.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations