Advertisement

Cage-like B40C30, B40C40, and B40C50: high-symmetry heterofullerenes isovalent with C60, C70, and C80

  • Miao Yan
  • Xin-Xin Tian
  • Ling Pei
  • Si-Dian Li
Original Paper
  • 47 Downloads

Abstract

The recent discovery of the cage-like borospherenes B40−/0, composed of interwoven double chains of boron, presents the possibility of forming BmCn heterofullerenes as hybrids of borospherenes and carbon fullerenes in dual spaces. Based on extensive first-principles theory calculations, we predict herein the possible existence of the high-symmetry BmCn heterofullerenes S10 B40C30 (1), C5 B40C40 (2), and S10 B40C50 (3), which are isovalent with C60, C70, and C80, respectively. These beautiful borafullerenes with boron aggregations feature one B30 boron double-chain nanoring at the equator, two bowl-shaped C15 or C25 caps at the top and bottom, and ten quasi-planar tetracoordinate peripheral C atoms in ten B-centered B6C hexagonal pyramids that are evenly distributed around the waist in a seamless “patched” structural motif. Detailed orbital and bonding analyses indicate that, as they are isovalent with C60, C70, and C80, respectively, B40C30 (1), B40C40 (2), and B40C50 (3) possess 30, 35, and 40 π bonds, respectively, of which 20 are 5c-2e π bonds delocalized over ten hexagonal pyramids that are evenly distributed around the waist. Such structural and bonding patterns confer high stability to these B-C heterofullerenes, which may be synthesized in experiments.

Keywords

Heterofullerenes Borafullerenes First-principles theory calculations Structures Bonding analyses 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21720102006 to S.-D. Li and U1510103 to X.-X. Tian).

Supplementary material

894_2018_3828_MOESM1_ESM.doc (5.4 mb)
ESM 1 (DOC 5490 kb)

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163Google Scholar
  2. 2.
    Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun 22:1423–1425CrossRefGoogle Scholar
  3. 3.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  4. 4.
    Rabenau T, Simon A, Kremer RK, Sohmen E (1993) The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Z Phys B 90:69–72Google Scholar
  5. 5.
    Guo T, Jin CM, Smalley RE (1991) Doping bucky: formation and properties of boron-doped buckminsterfullerene. J Phys Chem 95:4948–4950CrossRefGoogle Scholar
  6. 6.
    Muhr HJ, Nesper R, Schnyder B, Kötz R (1996) The boron heterofullerenes C59B and C69B: generation, extraction, mass spectrometric and XPS characterization. Chem Phys Lett 249:399–405CrossRefGoogle Scholar
  7. 7.
    Kurita N, Kobayashi K, Kumahora H, Tago K, Ozawa K (1992) Molecular structures, binding energies and electronic properties of dopyballs C59X (X= B, N and S). Chem Phys Lett 198:95–99CrossRefGoogle Scholar
  8. 8.
    Garg I, Sharma H, Dharamvir K, Jindal VK (2011) Substitutional patterns in boron doped heterofullerenes C60−nBn (n = 1–12). J Comput Theor Nanosci 8:642–655Google Scholar
  9. 9.
    Zhong XL, Pandey R, Rocha AR, Karna SP (2010) Can single-atom change affect electron transport properties of molecular nanostructures such as C60 fullerene? J Phys Chem Lett 1:1584–1589CrossRefGoogle Scholar
  10. 10.
    Li FY, D-e J, Chen ZF (2014) Computational quest for spherical C12B68 fullerenes with "magic" π-electrons and quasi-planar tetra-coordinated carbon. J Mol Model 20:2085–2013CrossRefGoogle Scholar
  11. 11.
    Mohr S, Pochet P, Amsler M, Schaefer B, Sadeghi A, Genovese L, Goedecker S (2014) Boron aggregation in the ground states of boron-carbon fullerenes. Phys Rev B 89:041404CrossRefGoogle Scholar
  12. 12.
    Dunk PW, Rodrίguez-Fortea A, Kaiser NK, Shinohara H, Poblet JM, Kroto HW (2013) Formation of heterofullerenes by direct exposure of C60 to boron vapor. Angew Chem Int Ed 52:315–319Google Scholar
  13. 13.
    Szwacki GN, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804–166804CrossRefGoogle Scholar
  14. 14.
    Prasad DLVK, Jemmis ED (2008) Stuffing improves the stability of fullerenelike boron clusters. Phys Rev Lett 100:165504CrossRefGoogle Scholar
  15. 15.
    Li FY, Jin P, D-e J, Wang L, Zhang SB, Zhao JJ, Chen ZF (2012) B80 and B101–103 clusters: remarkable stability of the core-shell structures established by validated density functionals. J Chem Phys 136:074302Google Scholar
  16. 16.
    Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731CrossRefGoogle Scholar
  17. 17.
    He RX, Zeng XC (2015) Electronic structures and electronic spectra of all-boron fullerene B40. Chem Commun 51:3185–3188CrossRefGoogle Scholar
  18. 18.
    Chen Q, Li WL, Zhao YF, Zhang SY, Hu HS, Bai H, Li HR, Tian WJ, Lu HG, Zhai HJ, Li SD, Li J, Wang LS (2015) Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 9:754–760CrossRefGoogle Scholar
  19. 19.
    Chen Q, Zhang SY, Bai H, Tian WJ, Gao T, Li HR, Miao CQ, Mu YW, Lu HG, Zhai HJ, Li SD (2015) Cage-like B41 + and B42 2+: new chiral members of the borospherene family. Angew Chem Int Ed 54:8160–8164CrossRefGoogle Scholar
  20. 20.
    Chen Q, Li HR, Miao CQ, Wang YJ, Lu HG, Mu YW, Ren GM, Zhai HJ, Li SD (2016) Endohedral Ca@B38: stabilization of a B38 2− borospherene dianion by metal encapsulation. Phys Chem Chem Phys 18:11610–11615CrossRefGoogle Scholar
  21. 21.
    Chen Q, Li HR, Tian WJ, Lu HG, Zhai HJ, Li SD (2016) Endohedral charge-transfer complex Ca@B37 : stabilization of a B37 3− borospherene trianion by metal-encapsulation. Phys Chem Chem Phys 18:14186–14190CrossRefGoogle Scholar
  22. 22.
    Tian WJ, Chen Q, Li HR, Yan M, Mu YW, Lu HG, Zhai HJ, Li SD (2016) Saturn-like charge-transfer complexes Li4&B36, Li5&B36 +, and Li6&B36 2+: exohedral metalloborospherenes with a perfect cage-like B36 4− core. Phys Chem Chem Phys 18:9922–9926CrossRefGoogle Scholar
  23. 23.
    Wang YJ, Zhao YF, Li WL, Jian T, Chen Q, You XR, Ou T, Zhao XY, Zhai HJ, Li SD, Li J, Wang LS (2016) Observation and characterization of the smallest borospherene, B28 and B28. J Chem Phys 144:064307CrossRefGoogle Scholar
  24. 24.
    Li HR, Jian T, Li WL, Miao CQ, Wang YJ, Chen Q, Luo XM, Wang K, Zhai HJ, Li SD, Wang LS (2016) Competition between quasi-planar and cage-like structures in the B29 cluster: photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 18:29147–29155CrossRefGoogle Scholar
  25. 25.
    Chen X, Zhao YF, Wang LS, Li J (2017) Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput Theor Chem 1107:57–65CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Chen X, Li J (2017) TGMin: a global-minimum structure search program based on a constrained basin-hopping algorithm. Nano Res 10:3407–3420CrossRefGoogle Scholar
  27. 27.
    Goedecker S, Hellmann W, Lenosky T (2005) Global minimum determination of the Born–Oppenheimer surface within density functional theory. Phys Rev Lett 95:055501Google Scholar
  28. 28.
    Goedecker S (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys 120:9911–9917CrossRefGoogle Scholar
  29. 29.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  30. 30.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654Google Scholar
  31. 31.
    Zubarev DY, Boldyrev AI (2009) Deciphering chemical bonding in golden cages. J Phys Chem A 113:866–868CrossRefGoogle Scholar
  32. 32.
    Zubarev DY, Boldyrev AI (2008a) Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J Org Chem 73:9251–9258CrossRefGoogle Scholar
  33. 33.
    Zubarev DY, Boldyrev AI (2008b) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  34. 34.
    Varetto U (2009) Molekel 5.4.0.8. Swiss National Supercomputing Center, MannoGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Averkiev BB, Wang LM, Huang W, Wang LS, Boldyrev AI (2009) Experimental and theoretical investigations of CB8 :towards rational design of hypercoordinated planar chemical species. Phys Chem Chem Phys 11:9840–9849CrossRefGoogle Scholar
  37. 37.
    Galeev TR, Li WL, Romanescu C, Cernusak I, Wang LS, Boldyrev AI (2012) Photoelectron spectroscopy and ab initio study of boron-carbon mixed clusters: CB9 and C2B8 . J Chem Phys 137:234306CrossRefGoogle Scholar
  38. 38.
    Reyes HNV, Anota EC, Castro M (2018) C60-like boron carbide and carbon nitride fullerenes: stability and electronic properties obtained by DFT methods. Fuller Nanotub Car N 26:52–60CrossRefGoogle Scholar
  39. 39.
    Schleyer PV, Maerker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  40. 40.
    Wang GJ, Zhou MF, Goettel JT, Schrobilgen GJ, Su J, Li J, Schlöder T, Riedel S (2014) Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 514:475–477CrossRefGoogle Scholar
  41. 41.
    Fagiani MR, Song XW, Petkov P, Debnath S, Gewinner S, Schöllkopf W, Heine T (2017) Untersuchung der struktur und dynamik des B13 + mithilfe der infrarot-photodissoziationsspektroskopie. Angew Chem 129:515–519CrossRefGoogle Scholar
  42. 42.
    Ciuparu D, Klie RF, Zhu YM, Pfefferle L (2004) Synthesis of pure boron single-wall nanotubes. J Phys Chem B 108:3967–3969CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular ScienceShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations