Advertisement

When finite becomes infinite: convergence properties of vibrational spectra of oligomer chains

  • Chien-Pin Chou
  • Henryk Witek
  • Stephan Irle
Original Paper
Part of the following topical collections:
  1. International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Abstract

We present a computational study of convergence properties of vibrational IR and Raman spectra for a series of increasingly long units of polyethylene, cis- and trans-polyacetylenes, and polyynes. Convergent behavior to the spectra of infinitely long polymers was observed in all cases when chains reached lengths of approximately 60 carbon atoms, both with respect to the positions of the bands and to their intensities. The vibrational spectra of longer chains are practically indistinguishable. The convergence rate depends on the degree of the π conjugation in a studied system: Vibrational spectra for oligoethylenes converge noticeably faster than the spectra for the conjugated systems. The slowest convergence is observed for skeletal motions of the oligomer chains, which may require more than a hundred carbon atoms in the chain to show deviations smaller than 1 cm−1 to the corresponding solid-state calculations. The results suggest that the boundary between the properties of finite and infinite molecular systems fades away for a surprisingly small number of atoms.

Keywords

Simulations of IR and Raman spectra of polymers Convergence in size evolution SCC-DFTB 

Notes

Acknowledgments

Ministry of Science and Technology, Taiwan (MOST 105-2113-M-009-018-MY3) and the Center for Emergent Functional Matter Science of National Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project funded by the Ministry of Education, Taiwan. We are grateful to the National Center for High-performance Computing, Taiwan for computer time and facilities.

References

  1. 1.
    Aljibury AL, Snyder RG, Strauss HL, Raghavachari K (1986) The structure of n-alkanes: high precision ab initio calculation and relation to vibrational spectra. J Chem Phys 84:6872–6878CrossRefGoogle Scholar
  2. 2.
    Kofranek M, Lischka H, Karpfen A (1992) From butadiene to polyacetylene: an ab initio study on the vibrational spectra of polyenes. J Chem Phys 96:982–996CrossRefGoogle Scholar
  3. 3.
    Yang S, Kertesz M, Zolyomi V, Kurti J (2007) Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne. J Phys Chem A 111:2434–2441CrossRefPubMedGoogle Scholar
  4. 4.
    Yang S, Kertesz M (2008) Linear Cn clusters: are they acetylenic or cumulenic? J Phys Chem A 112:146–151CrossRefPubMedGoogle Scholar
  5. 5.
    Choi CH, Kertesz M (1997) The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene. J Chem Phys 107:6712–6721CrossRefGoogle Scholar
  6. 6.
    Pulay P (1995) Analytical derivative techniques and the calculation of vibrational spectra. In: Yarkony D (ed) Modern electronic structure theory. Part II. World Scientific, Singapore, pp 1191–1240CrossRefGoogle Scholar
  7. 7.
    Delgado-Venegas RI, Mejía-Rodríguez D, Flores-Moreno R, Calaminici P, Köster AM (2016) Analytic second derivatives from auxiliary density perturbation theory. J Chem Phys 145:224103CrossRefPubMedGoogle Scholar
  8. 8.
    Flores-Moreno R, Köster AM (2008) Auxiliary density perturbation theory. J Chem Phys 128:134105CrossRefPubMedGoogle Scholar
  9. 9.
    Li WF, Irle S, Witek HA (2010) Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. ACS Nano 4:4475–4486CrossRefPubMedGoogle Scholar
  10. 10.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  11. 11.
    Eisler S, Slepkov AD, Elliott E, Luu T, McDonald R, Hegmann FA, Tykwinski RR (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127:2666–2676CrossRefPubMedGoogle Scholar
  12. 12.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Energetics and structure of glycine and alanine based model peptides: approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem Phys 263:203–219CrossRefGoogle Scholar
  13. 13.
    Krüger T, Elstner M, Schiffels P, Frauenheim T (2005) Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J Chem Phys 122(1–5):114110CrossRefPubMedGoogle Scholar
  14. 14.
    Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys Status Solidi B 217:357–376CrossRefGoogle Scholar
  15. 15.
    Witek HA, Irle S, Morokuma K (2004) Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. J Chem Phys 121:5163–5170CrossRefPubMedGoogle Scholar
  16. 16.
    Witek HA, Morokuma K (2004) Systematic study of vibrational frequencies calculated with the self-consistent-charge density-functional tight-binding method. J Comput Chem 25:1858–1864CrossRefPubMedGoogle Scholar
  17. 17.
    Małolepsza E, Witek HA, Morokuma K (2005) Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method. Chem Phys Lett 412:237–243CrossRefGoogle Scholar
  18. 18.
    Witek HA, Morokuma K, Stradomska A (2005) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. II. Infrared spectra. J Theor Comput Chem 4:639–655CrossRefGoogle Scholar
  19. 19.
    Witek HA, Morokuma K, Stradomska A (2004) Modeling vibrational spectra using the self-consistent-charge density-functional tight-binding method. I. Raman spectra. J Chem Phys 121:5171–5178CrossRefPubMedGoogle Scholar
  20. 20.
    Małolepsza E, Witek HA, Irle S (2007) Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20–C36. J Phys Chem A 111:6649–6657CrossRefPubMedGoogle Scholar
  21. 21.
    Małolepsza E, Lee YP, Witek HA, Irle S, Lin CF, Hsieh HM (2009) Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42. Int J Quantum Chem 109:1999–2011CrossRefGoogle Scholar
  22. 22.
    Witek HA, Trzaskowski B, Małolepsza E, Morokuma K, Adamowicz L (2007) Computational study of molecular properties of aggregates of C60 and (16, 0) zigzag nanotube. Chem Phys Lett 446:87–91CrossRefGoogle Scholar
  23. 23.
    Gaus M, Chou CP, Witek HA, Elstner M (2009) Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. J Phys Chem A 113:11866–11881CrossRefPubMedGoogle Scholar
  24. 24.
    Witek HA, Irle S, Zheng G, de Jong W, Morokuma K (2006) Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C28, C60, and C70. J Chem Phys 125(1–15):214706CrossRefPubMedGoogle Scholar
  25. 25.
    Kazachkin DV, Nishimura Y, Witek HA, Irle S, Borguet E (2011) Dramatic reduction of IR cross-sections for molecules adsorbed in single wall carbon nanotubes. J Am Chem Soc 129:8191–8198CrossRefGoogle Scholar
  26. 26.
    Li WF, Andrzejak M, Witek HA (2012) Evolution of physical properties of conjugated systems. Phys Status Solidi B 249:306–316CrossRefGoogle Scholar
  27. 27.
    Witek HA, Irle S (2016) Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 100:484–491CrossRefGoogle Scholar
  28. 28.
    Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefPubMedGoogle Scholar
  29. 29.
    Chou CP, Li WF, Witek HA, Andrzejak M (2011) Vibrational spectroscopy of linear carbon chains. In: Nemes L, Irle S (eds) Spectroscopy, dynamics and molecular theory of carbon plasmas and vapors. World Scientific, Hackensack, pp 375–415Google Scholar
  30. 30.
    Shirakawa H, Ikeda S (1971) Infrared spectra of poly(acetylene). Polym J 2:231–244CrossRefGoogle Scholar
  31. 31.
    Hirata S, Iwata S (1997) Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine. J Chem Phys 107:10075–10084CrossRefGoogle Scholar
  32. 32.
    Lichtmann LS, Imhoff EA, Sarhangi A, Fitchen DB (1984) Resonance Raman spectra of cis (CH)x and (CD)x. J Chem Phys 81:168–184CrossRefGoogle Scholar
  33. 33.
    Mulazzi E (1985) Polarized resonant Raman scattering spectra from stretched trans polyacetylene. Theory. Solid State Commun 55(9):807–810CrossRefGoogle Scholar
  34. 34.
    Tiziani R, Brivio GP, Mulazzi E (1985) Resonant Raman scattering spectra of trans-(CD)x: evidence for a distribution of conjugation lengths. Phys Rev B 31(6):4015–4018CrossRefGoogle Scholar
  35. 35.
    Tabata H, Fujii M, Hayashi S, Doi T, Wakabayashi T (2006) Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 44:3168–3176CrossRefGoogle Scholar
  36. 36.
    Krimm S, Liang CY, Sutherland GBBM (1956) Infrared spectra of high polymers. II. Polyethylene. J Chem Phys 25:549–562CrossRefGoogle Scholar
  37. 37.
    Nielsen JR, Woollett AH (1957) Vibrational spectra of polyethylenes and related substances. J Chem Phys 26:1391–1400CrossRefGoogle Scholar
  38. 38.
    Nielsen JR, Holland RF (1961) Dichroism and interpretation of the infrared bands of oriented crystalline polyethylene. J Mol Spectrosc 6:394–418CrossRefGoogle Scholar
  39. 39.
    Brown RG (1963) Raman spectra of polyethylenes. J Chem Phys 38:221–225CrossRefGoogle Scholar
  40. 40.
    Hirata S, Iwata S (1998) Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene. J Chem Phys 108:7901–7908CrossRefGoogle Scholar
  41. 41.
    Snyder RG (1967) A revised assignment of the B2g methylene wagging fundamental of the planar polyethylene chain. J Mol Spectrosc 23:224–228CrossRefGoogle Scholar
  42. 42.
    Snyder RG (1969) Raman spectrum of polyethylene and the assignment of the B2g way fundamental. J Mol Spectrosc 31:464–465CrossRefGoogle Scholar
  43. 43.
    Rakovic D, Stepanyan SA, Gribov LA, Panchenko YN (1982) The solution of the inverse spectroscopic problem for the IR spectra of trans- and cis-hexatrienes. J Mol Struct 90:363–377Google Scholar
  44. 44.
    Kim JY, Furukawa Y, Sakamoto A, Tasumi M (2002) Raman studies on the self-localized excitations in lightly and heavily doped trans-polyacetylene with sodium. J Phys Chem A 106:8876–8882Google Scholar
  45. 45.
    Hendra PJ, Agbenyega JK (1993) The Raman spectra of polymers, 1st edn, chap C. Wiley, Chichester, p 6Google Scholar
  46. 46.
    Hummel DO (1991) Atlas of polymer and plastics analysis, 3rd edn. Wiley-VCH, Munich Google Scholar
  47. 47.
    Khlifi M, Paillous P, Delpech C, Nishio M, Bruston P, Raulin F (1995) Absolute IR band intensities of diacetylene in the 250–4300 cm−1 region: implications for Titan’s atmosphere. J Mol Spectrosc 174:116–122CrossRefGoogle Scholar
  48. 48.
    Shindo F, Benilan Y, Guillemin JC, Chaquin P, Jolly A, Raulin F (2003) Ultraviolet and infrared spectrum of C6H2 revisited and vapor pressure curve in Titan's atmosphere. Planet Space Sci 51:9–17CrossRefGoogle Scholar
  49. 49.
    Shindo F, Benilan Y, Chaquin P, Guillemin JC, Jolly A, Raulin F (2001) IR spectrum of C8H2: integrated band intensities and some observational implications. J Mol Spectrosc 210:191–195CrossRefGoogle Scholar
  50. 50.
    Nishimura Y, Lee YP, Irle S, Witek HA (2014) Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH)n (n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. J Chem Phys 141:094303CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Science and Department of Applied ChemistryNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Waseda Research Institute for Science and Engineering (WISE)Waseda UniversityTokyoJapan
  3. 3.Center for Emergent Functional Matter Science, National Chiao Tung UniversityHsinchuTaiwan
  4. 4.Institute for Advanced Research and Department of ChemistryNagoya UniversityNagoyaJapan
  5. 5.Computational Sciences and Engineering Division & Chemical Sciences DivisionORNLOak RidgeUSA

Personalised recommendations